Xlib — C Language X Interface
X Window System Standard
X Version 11, Release 6.9/7.0

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn Widener, Tektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Window System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation for any purpose. It is provided “as is”” without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena. X version 11,
however, is the result of the efforts of dozens of individuals at almost as many locations and
organizations. At the risk of offending some of the players by exclusion, we would like to
acknowledge some of the people who deserve special credit and recognition for their work on
Xlib. Our apologies to anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was “loaned” to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not have had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took a rough draft and made it an infinitely better and more use-
ful document. The work they have done will help many everywhere. We also would like to thank
Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the window manager properties; and to Dave Rosenthal (Sun Microsystems)
who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is signifi-
cant that the bug reports (and many fixes) during alpha and beta test came almost exclusively
from just a few of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors and universities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital, who
has remained committed to the widest public availability of X and who made it possible to greatly
supplement MIT’s resources with the Digital staff in order to make version 11 a reality. Many of
the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Smokey Wallace, who has been vital to the
project’s success. Others not mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Converse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Software Founda-
tion) and Bill McMahon (Hewlett-Packard). The principal author of the rest of the international-
ization facilities is Glenn Widener (Tektronix). Our thanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, many others have contributed substantially to the design and imple-
mentation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Dov (HP), Chih-Chung Ko (II), Vera Cheng (III), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Harvey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda University), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato
Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhiro Kawai (Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (Sony Corporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna
Converse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consor-
tium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks also to Clive Feather (IXI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, many others have contributed substantially to the design and imple-
mentation. They are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFar-
land (HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Digital), Hiroyuki Miyamoto (Digital),
Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makiko Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with either monochrome or color bitmap display hardware. The
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in the network. Xlib is a C subroutine library that appli-
cation programs (clients) use to interface with the window system by means of a stream connec-
tion. Although a client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language interface to the X
Window System protocol. It is neither a tutorial nor a user’s guide to programming the X Win-
dow System. Rather, it provides a detailed description of each function in the library as well as a
discussion of the related background information. Xlib — C Language X Interface assumes a
basic understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these higher-level libraries, see the appropriate toolkit
documentation. The X Window System Protocol provides the definitive word on the behavior of
X. Although additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

. Overview of the X Window System

. Errors

. Standard header files

. Generic values and types

. Naming and argument conventions within Xlib
. Programming considerations

. Character sets and encodings

. Formatting conventions

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems have different meanings in X. You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or subwin-
dows. A screen is a physical monitor and hardware that can be color, grayscale, or monochrome.
There can be multiple screens for each display or workstation. A single X server can provide dis-
play services for any number of screens. A set of screens for a single user with one keyboard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hierarchy is a
root window, which covers each of the display screens. Each root window is partially or com-
pletely covered by child windows. All windows, except for root windows, have parents. There is
usually at least one window for each application program. Child windows may in turn have their

own children. In this way, an application program can create an arbitrarily deep tree on each
screen. X provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can extend
beyond the boundaries of the parent, but all output to a window is clipped by its parent. If several
children of a window have overlapping locations, one of the children is considered to be on top of
or raised over the others, thus obscuring them. Output to areas covered by other windows is sup-
pressed by the window system unless the window has backing store. If a window is obscured by
a second window, the second window obscures only those ancestors of the second window that
are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. A window usually but not always has a background pattern, which will be
repainted by the window system when uncovered. Child windows obscure their parents, and
graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left corner. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a window is hid-
den and then brought back onto the screen, its contents may be lost. The server then sends the
client program an Expose event to notify it that part or all of the window needs to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs. You can
provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a call
to XSync, which blocks until all previously buffered asynchronous events have been sent and
acted on. As an important side effect, the output buffer in Xlib is always flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor, and
GContext, as defined in the file <X11/X.h>. These resources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs. Fonts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts are often
cached in the server. Xlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed of events. Events may either be side effects of a request (for exam-
ple, restacking windows generates Expose events) or completely asynchronous (for example,
from the keyboard). A client program asks to be informed of events. Because other applications
can send events to your application, programs must be prepared to handle (or ignore) events of all

types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) generate
Expose and ConfigureRequest events. These events also arrive asynchronously, but the client
may wish to explicitly wait for them by calling XSync after calling a function that can cause the
server to generate events.

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it returns a zero.
If the function returns a status of zero, it has not updated the return arguments. Because C does
not provide multiple return values, many functions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functions that return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes, how-
ever, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

1.3. Standard Header Files
The following include files are part of the Xlib standard:
. <X11/Xlib.h>

This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbol XlibSpecificationRe-
lease. This symbol is defined to have the 6 in this release of the standard. (Release 5 of
Xlib was the first release to have this symbol.)

J <X11/X.h>

This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically from <X11/Xlib.h>, so application code should never need to
reference this file directly.

. <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Color Conversion

Contexts macros, are declared in this file. <X11/Xlib.h> must be included before including
this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 and 16. <X11/Xlib.h>
must be included before including this file.

. <X11/Xresource.h>

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15. <X11/Xlib.h> must be included before including this

file.

<X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
<X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in
appendix B. All cursor symbols have the prefix “XC_".

<X11/keysymdef.h>

This file declares all standard KeySym values, which are symbols with the prefix “XK_".
The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. The preprocessor symbol must be defined prior to inclusion of the file to obtain the
associated values. The preprocessor symbols are XK_MISCELLANY, XK_XKB_KEYS,
XK _ 3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK _LATIN4, XK_KATAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW, XK_THAI, and XK_KOREAN.

<X11/keysym.h>

This file defines the preprocessor symbols XK_MISCELLANY, XK_XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_I.ATIN4, and XK_GREEK and then
includes <X11/keysymdef.h>.

<X11/Xlibint.h>

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includes <X11/Xlib.h>.

<X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xlibint.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xproto.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the type Bool and the Boolean values True and False.
None is the universal null resource ID or atom.
The type XID is used for generic resource IDs.

The type XPointer is defined to be char* and is used as a generic opaque pointer to data.

1.5. Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that you
remember what information the function requires, these conventions are intended to make the
syntax of the functions more predictable.

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lowercase for variables and all uppercase for user macros, as
per existing convention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound words, where
needed, are constructed with underscores (_).

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a drawable), the graphics context occurs in the argument list after the other
resource. Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedes the y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Where the x, y, width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

1.6. Programming Considerations

The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for a given level of performance. Coordinates usually are
declared as an int in the interface. Values larger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufacturers’ workstations. If you
want your program to be portable, you should be particularly conservative here.

Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your application.
For further information, see chapter 14 and the Inter-Client Communication Conventions
Manual.

1.7. Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following are the most common:

X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a.z A.Z 0.9 "#8%& () *+,-./:;<=>?@[\]"_*{l}~ <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. It is also the set of graphic characters in 7-bit ASCII plus the same three control
characters. The actual encoding of these characters on the host is system dependent.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

Latin-1
The coded character set defined by the ISO8859-1 standard.
Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

STRING Encoding
Latin-1, plus tab and newline.
POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9. -

1.8. Formatting Conventions

Xlib — C Language X Interface uses the following conventions:

Global symbols are printed in this special font. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed in italics. In the explanatory text that follows, they usually are printed in
regular type.

Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI C environments. General discussion of the
function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate. For a
complete discussion of the Xlib error codes, see section 11.8.2.

To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word refurns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you can pass and are
returned start with the words specifies and returns.

Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

. Open (connect to) the display

. Obtain information about the display, image formats, or screens
. Generate a NoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISPLAY environment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. On POSIX-conformant systems, the display name or DISPLAY environment
variable can be a string in the format:

protocol/ hostname :number . screen_number

protocol Specifies a protocol family or an alias for a protocol family. Supported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-

ified.

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host machine. You may

optionally follow this display number with a period (.). A single CPU can have
more than one display. Multiple displays are usually numbered starting with
Zero.

screen_number
Specifies the screen to be used on that server. Multiple screens can be controlled
by a single X server. The screen_number sets an internal variable that can be
accessed by using the DefaultScreen macro or the XDefaultScreen function if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named ‘‘dual-
headed™:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp", "inet", or
"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hostname and display number, XOpenDisplay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified as "inet6",
TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib uses whatever it believes is the fastest
transport. If the hostname is a host machine name and a double colon (::) separates the hostname
and display number, XOpenDisplay connects using DECnet. A single X server can support any
or all of these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreen macro (or the XDe-
faultScreen function). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. The macros are used for C programming, and their corresponding
function equivalents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of the Display structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of the Display structure.

Note

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes, XDis-
playWidthMM, and XDisplayHeightMM functions in the next sections are mis-
named. These functions really should be named Screenwhatever and XScreenwhat-
ever, not Displaywhatever or XDisplaywhatever. Our apologies for the resulting
confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screen structures. The
members should be considered read-only, although they may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens and, in any case, may not actually be
black or white. The names are intended to convey the expected relative intensity of the colors.

10

BlackPixel (display, screen_number)

unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)

unsigned long XWhitePixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber (display)
Display *display;

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormap (display, screen_number)

Colormap XDefaultColormap (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisuallnfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int *XListDepths (display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL. To release the memory allocated for the array of depths, use
XFree.

DefaultGC (display, screen_number)

GC XDefaultGC (display, screen_number)
Display *display;
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

screen, respectively. You can modify its contents freely because it is not used in any Xlib func-
tion. This GC should never be freed.

DefaultRootWindow (display)

Window XDefaultRootWindow (display)
Display *display;

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)

Screen *XDefaultScreenOfDisplay (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen *XScreenOfDisplay (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreen(display)

int XDefaultScreen (display)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This macro or
function should be used to retrieve the screen number in applications that will use only a single
screen.

13

DefaultVisual (display, screen_number)

Visual *XDefaultVisual (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about visual
types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes (display, screen_number)

int XDisplayPlanes(display, screen_number)
Display *display;
int screen_number:;
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth, see
the glossary.

14

DisplayString (display)

char *XDisplayString (display)
Display *display;

display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that invoke the fork system call and want to open a new connection to the same display
from the child process as well as for printing error messages.

long XExtendedMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSize function returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib functions XDraw-
Lines, XDrawArcs, XFillPolygon, XChangeProperty, XSetClipRectangles, and XSetRe-
gion will use the extended-length encoding as necessary, if supported by the server. Use of the
extended-length encoding in other Xlib functions (for example, XDrawPoints, XDrawRectan-
gles, XDrawSegments, XFillArcs, XFillRectangles, XPutImage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSize function returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server. The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangles, and
XPutImage.

15

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by
the X server. Xlib automatically sets this number when replies, events, and errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol Version (display)

int XProtocol Version(display)
Display *display;

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolRevision (display)

int XProtocolRevision (display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

QLength(display)
int XQLength (display)
Display *display;
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be more
events that have not been read into the queue yet (see XEventsQueued).

RootWindow (display, screen_number)

Window XRootWindow (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a particular
screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display *display;

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor (display)

char *XServerVendor (display)
Display *display;

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

VendorRelease (display)

int XVendorRelease (display)
Display *display;

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2. Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server demands. To
help simplify applications, most of the work required to convert the data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmapFormats (display, count_return)
Display *display;
int *count_return;

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

ImageByteOrder (display)

int XImageByteOrder (display)
Display *display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap) or
for each pixel value in Z format. The macro or function can return either LSBFirst or MSB-
First.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)
Display *display;

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can return LSBFirst or
MSBFirst.

BitmapPad (display)

int XBitmapPad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

DisplayHeight(display, screen_number)

int XDisplayHeight(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

int XDisplayHeightMM (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number)

int XDisplayWidth(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

DisplayWidthMM (display, screen_number)

int XDisplayWidthMM (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take a
pointer to the appropriate screen structure.

BlackPixelOfScreen(screen)

unsigned long XBlackPixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)

int XCellsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screen)

int XDefaultDepthOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen (screen)

Visual *XDefaultVisualOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types, see section
3.1.

22

DoesBackingStore (screen)

int XDoesBackingStore (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders (screen)

Bool XDoesSaveUnders (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen does not support save unders (see section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

int XScreenNumberOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection setup time.

23

WidthOfScreen (screen)

int XWidthOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen (screen)

int XHeightOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)

int XWidthMMOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)

int XHeightMMOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)

int XMaxCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the maximum number of installed colormaps supported by the specified screen (see

24

section 9.3).

MinCmapsOfScreen(screen)

int XMinCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreen (screen)

int XPlanesOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.
Both return the root window of the specified screen.

2.3. Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby exercising
the connection.

2.4. Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use XFree.

25

XFree(data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object. A NULL pointer cannot be passed to this function.

2.5. Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (see XSetCloseDownMode). Therefore,
these windows, resource IDs, and other resources should never be referenced again or an error
will be generated. Before exiting, you should call XCloseDisplay explicitly so that any pending
errors are reported as XCloseDisplay performs a final XSynec operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode;
display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass DestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connection
close. A connection starts in DestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument is RetainPermanent or RetainTemporary, see sec-
tion 2.6.

XSetCloseDownMode can generate a Bad Value error.

2.6. Using X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to XCloseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

It disowns all selections owned by the client (see XSetSelectionOwner).

It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

It performs an XUngrabServer if the client has grabbed the server.
It releases all passive grabs made by the client.

It marks all resources (including colormap entries) allocated by the client either as perma-
nent or temporary, depending on whether the close-down mode is RetainPermanent or
RetainTemporary. However, this does not prevent other client applications from explic-
itly destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client’s resources as fol-

lows:

It examines each window in the client’s save-set to determine if it is an inferior (subwin-
dow) of a window created by the client. (The save-set is a list of other clients’ windows
that are referred to as save-set windows.) If so, the X server reparents the save-set window
to the closest ancestor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window.

It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of a
window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource created by the client
in the server (for example, Font, Pixmap, Cursor, Colormap, and GContext).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_mode of DestroyAll,
the X server does the following:

It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients that have terminated in RetainPermanent or RetainTempo-
rary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on all root windows (see section 4.3).

It resets all device maps and attributes (for example, key click, bell volume, and accelera-
tion) as well as the access control list.

It restores the standard root tiles and cursors.
It restores the default font path.

It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanent or RetainTemporary.

2.7. Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

To initialize support for concurrent threads, use XInitThreads.

Status XInitThreads();

The XInitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete before any other
Xlib call is made. This function returns a nonzero status if initialization was successful; other-

wise, it returns zero. On systems that do not support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concurrently. If all
calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDisplay.

void XLockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified display. Other
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls to XLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of times as XLockDisplay. This function
has no effect unless Xlib was successfully initialized for threads using XInitThreads.

To unlock a display, use XUnlockDisplay.

void XUnlockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display again. Any
threads that have blocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, then XUnlockDisplay must be
called an equal number of times before the display is actually unlocked. This function has no
effect unless Xlib was successfully initialized for threads using XInitThreads.

2.8. Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapter 13). Toolkits
and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until input is available and need to pro-
cess that input when it is available. Simple clients that use a single display and block for input in
an Xlib event function do not need to use these facilities.

28

To track internal connections for a display, use XAddConnectionWatch.

typedef void (*XConnectionWatchProc) (display, client_data, fd, opening, watch_data)
Display *display;
XPointer client_data;
int fd;
Bool opening;
XPointer *watch_data;,

Status XAddConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified display. The procedure is passed the display, the
specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a location for private watch data. If opening is
True, the procedure can store a pointer to private data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opening is False, the location
pointed to by watch_data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, before XAddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure directly or indi-
rectly causes the state of internal connections or watch procedures to change, the result is not
defined. If Xlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure to any Xlib function that locks the display is not defined
unless the executing thread has externally locked the display using XLockDisplay .

To stop tracking internal connections for a display, use XRemoveConnectionWatch.

Status XRemoveConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XRemoveConnectionWatch function removes a previously registered connection watch
procedure. The client_data must match the client_data used when the procedure was initially

29

registered.

To process input on an internal connection, use XProcessInternalConnection.

void XProcessInternalConnection (display, fd)
Display *display;
int fd;

display Specifies the connection to the X server.

fd Specifies the file descriptor.

The XProcessInternalConnection function processes input available on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example, select or poll) has indicated that input is available; otherwise, the effect is not
defined.

To obtain all of the current internal connections for a display, use XInternalConnectionNum-
bers.

Status XInternalConnectionNumbers (display, fd_return, count_return)
Display *display;
int **fd_return;
int *count_return;

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified display. When the allocated list is no longer needed,
free it by using XFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view graphic
output. Client applications can display overlapping and nested windows on one or more screens
that are driven by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by calling XOpenDisplay. This chapter begins with a
discussion of visual types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destroy windows

. Map windows

. Unmap windows

. Configure windows

. Change window stacking order
. Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communicat-
ing with window managers for it to work well with the various window managers in use (see sec-
tion 14.1). Toolkits generally adhere to these conventions for you, relieving you of the burden.
Toolkits also often supersede many functions in this chapter with versions of their own. For more
information, refer to the documentation for the toolkit that you are using.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) use an XVisuallnfo structure to return this infor-
mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and can be StaticGray, StaticColor, True-
Color, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The screen
can be color or grayscale, can have a colormap that is writable or read-only, and can also have a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a

31

grayscale screen. This leads to the following diagram:

Color Gray-scale
R/O R/W R/O R/W
Undecomposed | Static | Pseudo | Static | Gray
Colormap Color Color Gray | Scale

Decomposed True Direct
Colormap Color Color

Conceptually, as each pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on other hardware. The visual types
affect the colormap and the RGB values in the following ways:

. For PseudoColor, a pixel value indexes a colormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScale is treated the same way as PseudoColor except that the primary that drives the
screen is undefined. Thus, the client should always store the same value for red, green, and
blue in the colormaps.

. For DirectColor, a pixel value is decomposed into separate RGB subfields, and each sub-
field separately indexes the colormap for the corresponding value. The RGB values can be
changed dynamically.

. TrueColor is treated the same way as DirectColor except that the colormap has prede-

fined, read-only RGB values. These RGB values are server dependent but provide linear or
near-linear ramps in each primary.

. StaticColor is treated the same way as PseudoColor except that the colormap has prede-
fined, read-only, server-dependent RGB values.

. StaticGray is treated the same way as StaticColor except that the RGB values are equal
for any single pixel value, thus resulting in shades of gray. StaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. Actual RGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of available colormap entries in a newly created colormap. For DirectColor and True-
Color, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

VisuallD XVisuallDFrom Visual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

32

3.2. Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagation of events from children), and a prop-
erty list (see section 4.3). The window border and background can be a solid color or a pattern,
called a tile. All windows except the root have a parent and are clipped by their parent. If a win-
dow is stacked on top of another window, it obscures that other window for the purpose of input.
If a window has a background (almost all do), it obscures the other window for purposes of out-
put. Attempts to output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes, which are
the only attributes of an InputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask
. override-redirect

. cursor

If you specify any other attributes for an InputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input events in situations where InputOutput win-
dows are unnecessary. InputOnly windows are invisible; can only be used to control such things
as cursors, input event generation, and grabbing; and cannot be used in any graphics requests.
Note that InputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the window if no further explicit references to them are to be
made. The pattern can either be relative to the parent or absolute. If ParentRelative, the par-
ent’s background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any output to a
window that is not visible on the screen and that does not have backing store will be discarded.
An application may wish to create a window long before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (using XMapWindow), the X server generates an
Expose event for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a top-level
window. Your program must be prepared to use the actual size and position of the top window. It
is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the space given to it, or if the space is too
small for any useful work, your program might ask the user to resize the window. The border of
your top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowA ttributes struc-
ture and OR in the corresponding value bitmask in your subsequent calls to XCreateWindow
and XChangeWindowA ttributes, or use one of the other convenience functions that set the
appropriate attribute. The symbols for the value mask bits and the XSetWindowA ttributes
structure are:

33

/* Window attribute value mask bits */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CWBackPixmap
CWBackPixel
CWBorderPixmap
CWBorderPixel
CWBitGravity
CWWinGravity
CWBackingStore
CWBackingPlanes
CWBackingPixel
CWOverrideRedirect
CWSaveUnder
CWEventMask
CWDontPropagate
CWColormap
CWCursor

/* Values */

typedef struct {

Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel;
int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

long event_mask;

long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;

Cursor cursor;

} XSetWindow Attributes;

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

/* background, None, or ParentRelative */
/* background pixel */

/* border of the window or CopyFromParent */
/* border pixel value */

/* one of bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped, Always */

/* planes to be preserved if possible */

/* value to use in restoring planes */

/* should bits under be saved? (popups) */

/* set of events that should be saved */

/* set of events that should not propagate */
/* boolean value for override_redirect */

/* color map to be associated with window */
/* cursor to be displayed (or None) */

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes

34

Attribute Default InputOutput InputOnly

backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a window’s
background. This pixmap can be of any size, although some sizes may be faster than others. The
background-pixel attribute of a window specifies a pixel value used to paint a window’s back-
ground in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative. You can
set the background-pixel of a window to any pixel value (no default). If you specify a back-
ground-pixel, it overrides either the default background-pixmap or any value you may have set in
the background-pixmap. A pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and the win-
dow must have the same depth, or a BadMatch error results. If you set background-pixmap to
None, the window has no defined background. If you set the background-pixmap to ParentRel-
ative:

. The parent window’s background-pixmap is used. The child window, however, must have
the same depth as its parent, or a BadMatch error results.

. If the parent window has a background-pixmap of None, the window also has a back-
ground-pixmap of None.

. A copy of the parent window’s background-pixmap is not made. The parent’s background-
pixmap is examined each time the child window’s background-pixmap is required.

. The background tile origin always aligns with the parent window’s background tile origin.
If the background-pixmap is not ParentRelative, the background tile origin is the child
window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel, overrides

any previous background. The background-pixmap can be freed immediately if no further

explicit reference is made to it (the X server will keep a copy to use when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background of None. If the background is None, the

35

previous screen contents from other windows of the same depth as the window are simply left in
place as long as the contents come from the parent of the window or an inferior of the parent.
Otherwise, the initial contents of the exposed regions are undefined. Expose events are then gen-
erated for the regions, even if the background-pixmap is None (see section 10.9).

3.2.2. Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s border.
The border-pixel attribute of a window specifies a pixmap of undefined size filled with that pixel
be used for a window’s border. Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origin is always the same as the
background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window must
have the same depth, or a BadMatch error results. If you set the border-pixmap to Copy-
FromParent, the parent window’s border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child window. However, the child window must have
the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later draw into the pixmap used for the border, what happens is undefined because the X imple-
mentation is free either to make a copy of the pixmap or to use the same pixmap. If you specify a
border-pixel, it overrides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixels in the window’s border will be set to the border-pixel. Setting a new
border, whether by setting border-pixel or by setting border-pixmap, overrides any previous bor-
der.

Output to a window is always clipped to the inside of the window. Therefore, graphics operations
never affect the window border.

3.2.3. Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when an
InputOutput window is resized. The default value for the bit-gravity attribute is ForgetGrav-
ity. The window gravity of a window allows you to define how the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute is NorthWestGravity .

If the inside width or height of a window is not changed and if the window is moved or its border
is changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

36

NorthEastGravity (Width, 0)

WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities
has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. When a window is so repositioned, a GravityNotify event is generated
(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (—x, —y), and for win-
gravity the change in position of a child when its parent is so resized is (—x, —y). Note that Stat-
icGravity still only takes effect when the width or height of the window is changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always discarded after a
size change, even if a backing store or save under has been requested. The window is tiled with
its background and zero or more Expose events are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved), except
the child is also unmapped when the parent is resized, and an UnmapNotify event is generated.

3.2.4. Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of InputQutput
windows. If the X server maintains the contents of a window, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the contents
of a window. The backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is unneces-
sary, although some X implementations may still choose to maintain contents and, therefore, not
generate Expose events. A backing-store attribute of WhenMapped advises the X server that
maintaining contents of obscured regions when the window is mapped would be beneficial. In
this case, the server may generate an Expose event when the window is created. A backing-store
attribute of Always advises the X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, this is a request to
the X server to maintain complete contents, not just the region within the parent window bound-
aries. While the X server maintains the window’s contents, Expose events normally are not gen-
erated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

37

3.2.5. Save Under Flag

Some server implementations may preserve contents of InputQutput windows under other
InputOutput windows. This is not the same as preserving the contents of a window for you.
You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system preserve the screen contents under them, so the temporarily obscured applications do
not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the X server is
advised that, when this window is mapped, saving the contents of windows it obscures would be
beneficial.

3.2.6. Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an InputQutput
window hold dynamic data that must be preserved in backing store and during save unders. The
default value for the backing-planes attribute is all bits set to 1. You can set backing pixel to
specify what bits to use in planes not covered by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free to save only the specified bit planes in
the backing store or the save under and is free to regenerate the remaining planes with the speci-
fied pixel value. Any extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your window.

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or Inpu-
tOnly window (or, for some event types, inferiors of this window). The event mask is the bitwise
inclusive OR of zero or more of the valid event mask bits. You can specify that no maskable
events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following masks:
KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion, Button1Motion, But-
ton2Motion, Button3Motion, Button4dMotion, Button5Motion, and ButtonMotion. You can
specify that all events are propagated by setting NoEventMask (default).

3.2.8. Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without a window manager getting in the way. To control whether an InputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override a SubstructureRedirectMask on the parent. You can set the override-redirect flag to
True or False (default). Window managers use this information to avoid tampering with pop-up
windows (see also chapter 14).

3.2.9. Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the InputOutput
window. The colormap must have the same visual type as the window, or a BadMatch error
results. X servers capable of supporting multiple hardware colormaps can use this information,
and window managers can use it for calls to XInstallColormap. You can set the colormap

38

attribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied and used
by its child. However, the child window must have the same visual type as the parent, or a Bad-
Match error results. The parent window must not have a colormap of None, or a BadMatch
error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete copy of the colormap contents. Subsequent changes to the parent
window’s colormap attribute do not affect the child window.

3.2.10. Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the InputOutput
or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the InputQutput
or InputOnly window, and any change in the parent’s cursor will cause an immediate change in
the displayed cursor. By calling XFreeCursor, the cursor can be freed immediately as long as
no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management:

. You must never fight with the window manager for the size or placement of your top-level
window.
. You must be able to deal with whatever size window you get, even if this means that your

application just prints a message like ‘‘Please make me bigger” in its window.

. You should only attempt to resize or move top-level windows in direct response to a user
request. If a request to change the size of a top-level window fails, you must be prepared to
live with what you get. You are free to resize or move the children of top-level windows as
necessary. (Toolkits often have facilities for automatic relayout.)

. If you do not use a toolkit that automatically sets standard window properties, you should
set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Conventions Manual.

XCreateWindow is the more general function that allows you to set specific window attributes
when you create a window. XCreateSimpleWindow creates a window that inherits its attributes
from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics requests,
exposure processing, and VisibilityNotify events. An InputOnly window cannot be used as a
drawable (that is, as a source or destination for graphics requests). InputOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

39

Window XCreateWindow (display, parent, x, y, width, height, border_width, depth,

class, visual, valuemask , attributes)

Display *display;
Window parent;

intx,y;

unsigned int width, height;
unsigned int border_width;

int depth;

unsigned int class;

Visual *visual;

unsigned long valuemask;
XSetWindowAttributes *attributes ;

display
parent

X
y

width
height

border_width
depth

class

visual

valuemask

attributes

Specifies the connection to the X server.

Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside corner of the cre-
ated window’s borders and are relative to the inside of the parent window’s bor-
ders.

Specify the width and height, which are the created window’s inside dimensions
and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

Specifies the width of the created window’s border in pixels.

Specifies the window’s depth. A depth of CopyFromParent means the depth is
taken from the parent.

Specifies the created window’s class. You can pass InputOutput, InputOnly,
or CopyFromParent. A class of CopyFromParent means the class is taken
from the parent.

Specifies the visual type. A visual of CopyFromParent means the visual type is
taken from the parent.

Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate a CreateNo-
tify event. The created window is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, O] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for an InputOnly window must be zero, or a BadMatch error results. For
class InputOutput, the visual type and depth must be a combination supported for the screen, or

40

a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a window of class InputOnly, or a BadMatch error results. For an InputOnly window, the

depth must be zero, and the visual must be one supported by the screen. If either condition is not
met, a BadMatch error results. The parent window, however, may have any depth and class. If

you specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the window,
call XMapWindow. The new window initially uses the same cursor as its parent. A new cursor
can be defined for the new window by calling XDefineCursor. The window will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscured by any of its
ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use XCreateSim-
pleWindow.

Window XCreateSimpleWindow (display, parent, x, y, width, height, border_width,
border, background)
Display *display;
Window parent;
intx,y;
unsigned int width, height;
unsigned int border_width;
unsigned long border;
unsigned long background;

display Specifies the connection to the X server.

parent Specifies the parent window.

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window’s borders and are relative to the inside of the parent window’s borders.

width

height Specify the width and height, which are the created window’s inside dimensions

and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

border_width Specifies the width of the created window’s border in pixels.
border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow for a
specified parent window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking order with
respect to siblings. Any part of the window that extends outside its parent window is clipped.

The border_width for an InputOnly window must be zero, or a BadMatch error results. XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and border, have their default values.

41

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of a win-
dow.

To destroy a window and all of its subwindows, use XDestroyWindow .

XDestroyWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows
and causes the X server to generate a DestroyNotify event for each window. The window should
never be referenced again. If the window specified by the w argument is mapped, it is unmapped
automatically. The ordering of the DestroyNotify events is such that for any given window being
destroyed, DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. The ordering among siblings and across subhierarchies is not otherwise con-
strained. If the window you specified is a root window, no windows are destroyed. Destroying a
mapped window will generate Expose events on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate a BadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X server to generate a DestroyNotify event for each
window. If any mapped subwindows were actually destroyed, XDestroySubwindows causes the
X server to generate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindows can generate a BadWindow error.

3.5. Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

42

. It is obscured by another opaque window.
. One of its ancestors is not mapped.
. It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the screen.
A client receives the Expose events only if it has asked for them. Windows retain their position
in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If SubstructureRedi-
rectMask has been selected by a window manager on a parent window (usually a root window),
a map request initiated by other clients on a child window is not performed, and the window man-
ager is sent a MapRequest event. However, if the override-redirect flag on the child had been set
to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the window to its final location. A window manager that wants to provide decora-
tion might reparent the child into a frame first. For further information, see sections 3.2.8 and
10.10. Only a single client at a time can select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives a Resiz-
eRequest event.

To map a given window, use XMapWindow.

XMapWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mapping a window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be visi-
ble on the screen if it is not obscured by another window. This function has no effect if the win-
dow is already mapped.

If the override-redirect of the window is False and if some other client has selected Substructur-
eRedirectMask on the parent window, then the X server generates a MapRequest event, and the
XMapWindow function does not map the window. Otherwise, the window is mapped, and the X
server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its background. If the window’s background is undefined, the existing screen
contents are not altered, and the X server generates zero or more Expose events. If backing-store
was maintained while the window was unmapped, no Expose events are generated. If backing-
store will now be maintained, a full-window exposure is always generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure take place for any newly viewable infe-
riors.

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causes to be displayed. If the client maps and paints the window

43

and if the client begins processing events, the window is painted twice. To avoid this, first ask for
Expose events and then map the window, so the client processes input events as usual. The event
list will include Expose for each window that has appeared on the screen. The client’s normal
response to an Expose event should be to repaint the window. This method usually leads to sim-
pler programs and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.
To map and raise a window, use XMapRaised.

XMapRaised (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the window
and all of its subwindows that have had map requests. However, it also raises the specified win-
dow to the top of the stack. For additional information, see XMapWindow .

XMapRaised can generate multiple BadWindow errors.
To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generates Expose events on each newly displayed window. This
may be much more efficient than mapping many windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6. Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

44

XUnmapWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to gener-
ate an UnmapNotify event. If the specified window is already unmapped, XUnmapWindow
has no effect. Normal exposure processing on formerly obscured windows is performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping a window will generate Expose events on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window in bottom-
to-top stacking order. It causes the X server to generate an UnmapNotify event on each subwin-
dow and Expose events on formerly obscured windows. Using this function is much more effi-
cient than unmapping multiple windows one at a time because the server needs to perform much
of the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and resize a
window, or change a window’s border width. To change one of these parameters, set the appro-
priate member of the XWindowChanges structure and OR in the corresponding value mask in
subsequent calls to XConfigureWindow. The symbols for the value mask bits and the XWin-
dowChanges structure are:

45

/* Configure window value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are relative to the
parent’s origin and indicate the position of the upper-left outer corner of the window. The width
and height members are used to set the inside size of the window, not including the border, and
must be nonzero, or a BadValue error results. Attempts to configure a root window have no
effect.

The border_width member is used to set the width of the border in pixels. Note that setting just
the border width leaves the outer-left corner of the window in a fixed position but moves the abso-
lute position of the window’s origin. If you attempt to set the border-width attribute of an Inpu-
tOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set to Above, Below, ToplIf,
Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no further processing is performed. Otherwise, if some other client has selected ResizeRedirect-
Mask on the window and the inside width or height of the window is being changed, a Resiz-
eRequest event is generated, and the current inside width and height are used instead. Note that
the override-redirect flag of the window has no effect on ResizeRedirectMask and that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMask on the win-
dow.

When the geometry of the window is changed as specified, the window is restacked among sib-
lings, and a ConfigureNotify event is generated if the state of the window actually changes.
GravityNotify events are generated after ConfigureNotify events. If the inside width or height
of the window has actually changed, children of the window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their window
gravity. Depending on the window’s bit gravity, the contents of the window also may be moved
(see section 3.2.3).

46

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and its inferiors. As a result of
increasing the width or height, exposure processing is also performed on any new regions of the
window and any regions where window contents are lost.

The restack check (specifically, the computation for Bottomlf, Toplf, and Opposite) is per-
formed with respect to the window’s final size and position (as controlled by the other arguments
of the request), not its initial position. If a sibling is specified without a stack_mode, a Bad-
Match error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the stack.

BottomlIf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the
stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the stack.

BottomlIf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the
stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow.

47

XConfigureWindow (display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges structure
to reconfigure a window’s size, position, border, and stacking order. Values not specified are
taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a Bad-
Match error results. Note that the computations for BottomlIf, ToplIf, and Opposite are per-
formed with respect to the window’s final geometry (as controlled by the other arguments passed
to XConfigureWindow), not its initial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow (display, w, x, y)
Display *display;

Window w;
intx,y;
display Specifies the connection to the X server.
w Specifies the window to be moved.
X
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordinates,
but it does not change the window’s size, raise the window, or change the mapping state of the
window. Moving a mapped window may or may not lose the window’s contents depending on if
the window is obscured by nonchildren and if no backing store exists. If the contents of the win-
dow are lost, the X server generates Expose events. Moving a mapped window generates
Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

48

To change a window’s size without changing the upper-left coordinate, use XResizeWindow.

XResizeWindow (display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window.

width

height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’s upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its con-
tents and generate Expose events. If a mapped window is made smaller, changing its size gener-
ates Expose events on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow (display, w, x, y, width, height)
Display *display;
Window w;
intx,y;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

X

y Specify the x and y coordinates, which define the new position of the window rel-
ative to its parent.

width

height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified window with-
out raising it. Moving and resizing a mapped window may generate an Expose event on the win-
dow. Depending on the new size and location parameters, moving and resizing a window may
generate Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. Otherwise, the window size and location are changed.

49

XMoveResizeWindow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth (display, w, width)
Display *display;
Window w;
unsigned int width;

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to the speci-
fied width.

XSetWindowBorderWidth can generate a BadWindow error.

3.8. Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.
To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no sib-
ling window obscures it. If the windows are regarded as overlapping sheets of paper stacked on a
desk, then raising a window is analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped window may generate Expose events
for the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWindow.

50

XLowerWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then lowering a window is analogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows (display, w, direction)
Display *display;
Window w;
int direction;

display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate the window. You

can pass RaiseL.owest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the speci-
fied direction. If you specify RaiseLowest, XCirculateSubwindows raises the lowest mapped
child (if any) that is occluded by another child to the top of the stack. If you specify LowerHigh-
est, XCirculateSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on formerly obscured
windows. If some other client has selected SubstructureRedirectMask on the window, the X
server generates a CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by another
child, use XCirculateSubwindowsUp.

51

XCirculateSubwindowsUp (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. This is a convenience function equivalent to XCirculateSubwindows with RaiseLow-
est specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes another
child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not affected. This is a convenience function equivalent to XCirculateSubwindows with Lower-
Highest specified.

XCirculateSubwindowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows (display, windows , nwindows);
Display *display;
Window windows|];
int nwindows

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot-
tom. The stacking order of the first window in the windows array is unaffected, but the other win-
dows in the array are stacked underneath the first window, in the order of the array. The stacking
order of the other windows is not affected. For each window in the window array that is not a
child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates ConfigureRequest events for

52

each window whose override-redirect flag is not set, and no further processing is performed. Oth-
erwise, the windows will be restacked in top-to-bottom order.

XRestackWindows can generate a BadWindow error.

3.9. Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowA ttributes
is the more general function that allows you to set one or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this section allow you to set
one specific window attribute, such as a window’s background.

To change one or more attributes for a given window, use XChangeWindowA ttributes.

XChangeWindowAttributes (display, w, valuemask , attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes:

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the attributes argument. This

mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced. The values and restric-
tions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the window
attributes in the XSetWindowAttributes structure to change the specified window attributes.
Changing the background does not cause the window contents to be changed. To repaint the win-
dow and its background, use XClearWindow. Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of a root window to None or ParentRelative restores the default background pixmap.
Changing the border of a root window to CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window. Changing the back-
ing-store of an obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect. Changing the
colormap of a window (that is, defining a new map, not changing the contents of the existing
map) generates a ColormapNotify event. Changing the colormap of a visible window may have
no immediate effect on the screen because the map may not be installed (see XInstallCol-
ormap). Changing the cursor of a root window to None restores the default cursor. Whenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained sepa-
rately. When an event is generated, it is reported to all interested clients. However, only one
client at a time can select for SubstructureRedirectMask, ResizeRedirectMask, and Button-
PressMask. If a client attempts to select any of these event masks and some other client has

53

already selected one, a BadAccess error results. There is only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground (display, w, background_pixel)
Display *display;
Window w;
unsigned long background_pixel,

display Specifies the connection to the X server.
w Specifies the window.
background_pixel

Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the specified pixel
value. Changing the background does not cause the window contents to be changed. XSetWin-
dowBackground uses a pixmap of undefined size filled with the pixel value you passed. If you
try to change the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use XSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap (display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
background_pixmap

Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to
the specified pixmap. The background pixmap can immediately be freed if no further explicit ref-
erences to it are to be made. If ParentRelative is specified, the background pixmap of the win-
dow’s parent is used, or on the root window, the default background is restored. If you try to
change the background of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

54

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder.

XSetWindowBorder (display, w, border_pixel)

Display *display;

Window w;

unsigned long border_pixel;
display Specifies the connection to the X server.
w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you specify.
If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.
To change and repaint the border tile of a given window, use XSetWindowBorderPixmap.

XSetWindowBorderPixmap (display, w, border_pixmap)
Display *display;
Window w;
Pixmap border_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
border_pixmap

Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap
you specify. The border pixmap can be freed immediately if no further explicit references to it
are to be made. If you specify CopyFromParent, a copy of the parent window’s border pixmap
is used. If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow errors.

To set the colormap of a given window, use XSetWindowColormap.

55

XSetWindowColormap (display, w, colormap)
Display *display;
Window w;
Colormap colormap;

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.
To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor (display, w, cursor)
Display *display;
Window w;
Cursor cursor;

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None, it is
equivalent to XUndefineCursor .

XDefineCursor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XUndefineCursor function undoes the effect of a previous XDefineCursor for this win-
dow. When the pointer is in the window, the parent’s cursor will now be used. On the root win-
dow, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

56

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib window
information functions to:

. Obtain information about a window

. Translate screen coordinates

. Manipulate property lists

. Obtain and change window properties

. Manipulate selections

4.1. Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the win-
dow’s current attributes, the window’s current geometry, or the current pointer coordinates.
Because they are most frequently used by window managers, these functions all return a status to
indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use XQuery-
Tree.

Status XQueryTree(display, w, root_return, parent_return, children_return, nchildren_return)
Display *display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and number of children
you want to obtain.

root_return Returns the root window.
parent_return Returns the parent window.

children_return
Returns the list of children.

nchildren_return
Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of chil-
dren windows (NULL when there are no children), and the number of children in the list for the
specified window. The children are listed in current stacking order, from bottom-most (first) to
top-most (last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free a non-

57

NULL children list when it is no longer needed, use XFree.

XQueryTree can generate a BadWindow error.

To obtain the current attributes of a given window, use XGetWindowA ttributes.

Status XGetWindowAttributes (display, w, window_attributes_return)

Display *display;
Window w;

XWindowAttributes *window_attributes_return;

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to obtain.

window_attributes_return

Returns the specified window’s attributes in the XWindowA ttributes structure.

The XGetWindowA ttributes function returns the current attributes for the specified window to

an XWindowAttributes structure.

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Screen *screen;

} XWindowAttributes;

/* location of window */

/* width and height of window */

/* border width of window */

/* depth of window */

/* the associated visual structure */

/* root of screen containing window */

/* InputOutput, InputOnly*/

/* one of the bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped, Always */

/* planes to be preserved if possible */

/* value to be used when restoring planes */
/* boolean, should bits under be saved? */

/* color map to be associated with window */
/* boolean, is color map currently installed*/
/* IsUnmapped, IsUnviewable, IsViewable */
/* set of events all people have interest in*/
/* my event mask */

/* set of events that should not propagate */
/* boolean value for override-redirect */

/* back pointer to correct screen */

The x and y members are set to the upper-left outer corner relative to the parent window’s origin.
The width and height members are set to the inside size of the window, not including the border.
The border_width member is set to the window’s border width in pixels. The depth member is set
to the depth of the window (that is, bits per pixel for the object). The visual member is a pointer
to the screen’s associated Visual structure. The root member is set to the root window of the

58

screen containing the window. The class member is set to the window’s class and can be either
InputOutput or InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.2.3.

The backing_store member is set to indicate how the X server should maintain the contents of a
window and can be WhenMapped, Always, or NotUseful. The backing_planes member is set
to indicate (with bits set to 1) which bit planes of the window hold dynamic data that must be pre-
served in backing_stores and during save_unders. The backing_pixel member is set to indicate
what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the colormap
for the specified window and can be a colormap ID or None. The map_installed member is set to
indicate whether the colormap is currently installed and can be True or False. The map_state
member is set to indicate the state of the window and can be IsUnmapped, IsUnviewable, or
IsViewable. IsUnviewable is used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks selected on the
window by all clients. The your_event_mask member is set to the bitwise inclusive OR of all
event masks selected by the querying client. The do_not_propagate_mask member is set to the
bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure control
facilities and can be True or False. Window manager clients should ignore the window if this
member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct screen.
This makes it easier to obtain the screen information without having to loop over the root window
fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

59

Status XGetGeometry (display, d, root_return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)
Display *display;
Drawable d;
Window *root_return;
int *x_return, *y_return;
unsigned int *width_return, *height_return;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap.

root_return Returns the root window.

X_return

y_return Return the x and y coordinates that define the location of the drawable. For a

window, these coordinates specify the upper-left outer corner relative to its par-
ent’s origin. For pixmaps, these coordinates are always zero.

width_return
height_return Return the drawable’s dimensions (width and height). For a window, these
dimensions specify the inside size, not including the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the drawable.
The geometry of the drawable includes the x and y coordinates, width and height, border width,
and depth. These are described in the argument list. It is legal to pass to this function a window
whose class is InputOnly.

XGetGeometry can generate a BadDrawable error.

4.2. Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the coordinate space of
one window to another window or need to determine which window the pointing device is in.
XTranslateCoordinates and XQueryPointer fulfill these needs (and avoid any race conditions)
by asking the X server to perform these operations.

To translate a coordinate in one window to the coordinate space of another window, use XTrans-
lateCoordinates.

60

Bool XTranslateCoordinates (display, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
int *dest_x_return, *dest_y_return;
Window *child_return;

display Specifies the connection to the X server.

src._w Specifies the source window.

dest_w Specifies the destination window.

SrC_X

src_y Specify the x and y coordinates within the source window.

dest_x_return
dest_y_return Return the x and y coordinates within the destination window.

child_return ~ Returns the child if the coordinates are contained in a mapped child of the desti-
nation window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates relative to the
source window’s origin and returns these coordinates to dest_x_return and dest_y_return relative
to the destination window’s origin. If XTranslateCoordinates returns False, src_w and dest_w
are on different screens, and dest_x_return and dest_y_return are zero. If the coordinates are con-
tained in a mapped child of dest_w, that child is returned to child_return. Otherwise, child_return
is set to None.

XTranslateCoordinates can generate a BadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer coordinates relative to a
specified window, use XQueryPointer.

61

Bool XQueryPointer(display, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)
Display *display;
Window w;
Window *root_return, *child_return;
int *root_x_return, *root_y_return;
int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.
w Specifies the window.
root_return Returns the root window that the pointer is in.

child_return ~ Returns the child window that the pointer is located in, if any.

root_x_return
root_y_return Return the pointer coordinates relative to the root window’s origin.

win_x_return
win_y_return Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and the pointer
coordinates relative to the root window’s origin. If XQueryPointer returns False, the pointer is
not on the same screen as the specified window, and XQueryPointer returns None to
child_return and zero to win_x_return and win_y_return. If XQueryPointer returns True, the
pointer coordinates returned to win_x_return and win_y_return are relative to the origin of the
specified window. In this case, XQueryPointer returns the child that contains the pointer, if any,
or else None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys in
mask_return. It sets mask_return to the bitwise inclusive OR of one or more of the button or
modifier key bitmasks to match the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state if device
event processing is frozen (see section 12.1).

XQueryPointer can generate a BadWindow error.

4.3. Properties and Atoms

A property is a collection of named, typed data. The window system has a set of predefined prop-
erties (for example, the name of a window, size hints, and so on), and users can define any other
arbitrary information and associate it with windows. Each property has a name, which is an ISO
Latin-1 string. For each named property, a unique identifier (atom) is associated with it. A prop-
erty also has a type, for example, string or integer. These types are also indicated using atoms, so
arbitrary new types can be defined. Data of only one type may be associated with a single prop-
erty name. Clients can store and retrieve properties associated with windows. For efficiency rea-
sons, an atom is used rather than a character string. XInternAtom can be used to obtain the
atom for property names.

A property is also stored in one of several possible formats. The X server can store the informa-
tion as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X server to present
the data in the byte order that the client expects.

62

Note

If you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms for
these properties are defined in <X11/Xatom.h>. To avoid name clashes with user symbols, the
#define name for each atom has the XA_ prefix. For an explanation of the functions that let you
get and set much of the information stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are specified in
other X Consortium standards, such as the Inter-Client Communication Conventions Manual and
the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The functions
described in this section let you define new properties and get the unique atom IDs in your appli-
cations.

Although any particular atom can have some client interpretation within each of the name spaces,
atoms occur in five distinct name spaces within the protocol:

. Selections

. Property names
. Property types
. Font properties

. Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO RESOURCE_MANAGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WINDOWS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFERS WM_HINTS
CUT_BUFFER6 WM_ICON_NAME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_NAME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DEFAULT_MAP WM_PROTOCOLS
RGB_GRAY_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP WM_ZOOM_HINTS

63

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER
PIXMAP

POINT
RGB_COLOR_MAP
RECTANGLE
STRING

VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX_SPACE
END_SPACE
SUPERSCRIPT_X
SUPERSCRIPT_Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL_NAME

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT

POINT_SIZE
RESOLUTION
COPYRIGHT

NOTICE
FAMILY_NAME
CAP_HEIGHT

For further information about font properties, see section 8.5.

To return an atom for a given name, use XInternAtom.

Atom XlnternAtom (display, atom_name, only_if exists)

Display *display;

char *atom_name;

Bool only_if exists;
display

atom_name

only_if exists Specifies a Boolean value that indicates whether the atom must be created.

The XInternAtom function returns the atom identifier associated with the specified atom_name
string. If only_if_exists is False, the atom is created if it does not exist. Therefore, XInter-
nAtom can return None. If the atom name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Uppercase and lowercase matter; the strings ‘““‘thing”’,
“Thing”, and “thinG™ all designate different atoms. The atom will remain defined even after the
client’s connection closes. It will become undefined only when the last connection to the X

server closes.

Specifies the connection to the X server.

Specifies the name associated with the atom you want returned.

64

XInternAtom can generate BadAlloc and BadValue errors.
To return atoms for an array of names, use XInternAtoms.

Status XInternAtoms (display, names, count, only_if_exists, atoms_return)
Display *display;
char **names;
int count;
Bool only_if exists;
Atom *atoms_return;

display Specifies the connection to the X server.
names Specifies the array of atom names.
count Specifies the number of atom names in the array.

only_if exists Specifies a Boolean value that indicates whether the atom must be created.

atoms_return Returns the atoms.

The XInternAtoms function returns the atom identifiers associated with the specified names.
The atoms are stored in the atoms_return array supplied by the caller. Calling this function is
equivalent to calling XInternAtom for each of the names in turn with the specified value of
only_if_exists, but this function minimizes the number of round-trip protocol exchanges between
the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names; otherwise, it
returns zero.

XInternAtoms can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName (display, atom)
Display *display;

Atom atom;
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. To
free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

To return the names for an array of atom identifiers, use XGetAtomNames.

65

Status XGetAtomNames (display, atoms, count, names_return)
Display *display;
Atom *atoms;
int count;
char **names_return;

display Specifies the connection to the X server.
atoms Specifies the array of atoms.
count Specifies the number of atoms in the array.

names_return Returns the atom names.

The XGetAtomNames function returns the names associated with the specified atoms. The
names are stored in the names_return array supplied by the caller. Calling this function is equiv-
alent to calling XGetAtomName for each of the atoms in turn, but this function minimizes the
number of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if names are returned for all of the atoms; otherwise, it
returns zero.

XGetAtomNames can generate a BadAtom error.

4.4. Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a value
(see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation
is left to the clients. The type char is used to represent 8-bit quantities, the type short is used to
represent 16-bit quantities, and the type long is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange window prop-
erties. In addition, Xlib provides other utility functions for inter-client communication (see chap-
ter 14).

To obtain the type, format, and value of a property of a given window, use XGetWindowProp-
erty.

66

int XGetWindowProperty (display, w, property, long_offset, long_length, delete, req_type,

actual_type_return, actual_format_return, nitems_return, bytes_after_return,
prop_return)

Display *display;

Window w;

Atom property;

long long_offset, long_length;
Bool delete;

Atom req_type;

Atom *actual_type_return;

int *actual_format_return;
unsigned long *nitems_return;
unsigned long *bytes_after_return;
unsigned char **prop_return;

display Specifies the connection to the X server.

w

Specifies the window whose property you want to obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities) where the data

is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be retrieved.

delete

Specifies a Boolean value that determines whether the property is deleted.

req_type Specifies the atom identifier associated with the property type or AnyProperty-

Type.

actual_type_return

Returns the atom identifier that defines the actual type of the property.

actual_format_return

Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the

prop_return data.

bytes_after_return

Returns the number of bytes remaining to be read in the property if a partial read
was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual format of
the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes remain-

ing to
erty s

be read in the property; and a pointer to the data actually returned. XGetWindowProp-
ets the return arguments as follows:

If the specified property does not exist for the specified window, XGetWindowProperty
returns None to actual_type_return and the value zero to actual_format_return and
bytes_after_return. The nitems_return argument is empty. In this case, the delete argument
is ignored.

If the specified property exists but its type does not match the specified type, XGetWin-
dowProperty returns the actual property type to actual_type_return, the actual property
format (never zero) to actual_format_return, and the property length in bytes (even if the

67

actual_format_return is 16 or 32) to bytes_after_return. It also ignores the delete argument.
The nitems_return argument is empty.

. If the specified property exists and either you assign AnyPropertyType to the req_type
argument or the specified type matches the actual property type, XGetWindowProperty
returns the actual property type to actual_type_return and the actual property format (never
zero) to actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I =4 * long_offset

T=N-1I
L = MINIMUM(T, 4 * long_length)
A=N-(I+L)

The returned value starts at byte index I in the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to be negative, a BadValue error results.
The value of bytes_after_return is A, giving the number of trailing unread bytes in the
stored property.

If the returned format is 8, the returned data is represented as a char array. If the returned format
is 16, the returned data is represented as a short array and should be cast to that type to obtain the
elements. If the returned format is 32, the returned data is represented as a long array and should
be cast to that type to obtain the elements.

XGetWindowProperty always allocates one extra byte in prop_return (even if the property is
zero length) and sets it to zero so that simple properties consisting of characters do not have to be
copied into yet another string before use.

If delete is True and bytes_after_return is zero, XGetWindowProperty deletes the property
from the window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.
To obtain a given window’s property list, use XListProperties.

Atom *XListProperties (display, w, num_prop_return)
Display *display;
Window w;
int *num_prop_return;
display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are defined for
the specified window or returns NULL if no properties were found. To free the memory allocated
by this function, use XFree.

XListProperties can generate a BadWindow error.

68

To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the type but
simply passes it back to an application that later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit

quantities. Possible values are 8, 16, and 32. This information allows the X
server to correctly perform byte-swap operations as necessary. If the format is
16-bit or 32-bit, you must explicitly cast your data pointer to an (unsigned char *)
in the call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeReplace, Prop-
ModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes the X

server to generate a PropertyNotify event on that window. XChangeProperty performs the fol-

lowing:

. If mode is PropModeReplace, XChangeProperty discards the previous property value
and stores the new data.

. If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the existing data,
respectively. The type and format must match the existing property value, or a BadMatch
error results. If the property is undefined, it is treated as defined with the correct type and
format with zero-length data.

If the specified format is 8, the property data must be a char array. If the specified format is 16,
the property data must be a short array. If the specified format is 32, the property data must be a
long array.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what hap-
pens when the connection to the X server is closed, see section 2.6. The maximum size of a prop-
erty is server dependent and can vary dynamically depending on the amount of memory the server
has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and BadWin-
dow errors.

69

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties (display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties|];
int num_prop;
int npositions;;

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.
npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window and
causes the X server to generate PropertyNotify events. If the property names in the properties
array are viewed as being numbered starting from zero and if there are num_prop property names
in the list, then the value associated with property name I becomes the value associated with prop-
erty name (I + npositions) mod N for all I from zero to N — 1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right for positive npositions, left for
negative npositions). If npositions mod N is nonzero, the X server generates a PropertyNotify
event for each property in the order that they are listed in the array. If an atom occurs more than
once in the list or no property with that name is defined for the window, a BadMatch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow errors.
To delete a property on a given window, use XDeleteProperty.

XDeleteProperty (display, w, property)
Display *display;
Window w;
Atom property;
display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined on
the specified window and causes the X server to generate a PropertyNotify event on the window
unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.5. Selections

Selections are one method used by applications to exchange data. By using the property mecha-
nism, applications can exchange data of arbitrary types and can negotiate the type of the data. A
selection can be thought of as an indirect property with a dynamic type. That is, rather than

70

having the property stored in the X server, the property is maintained by some client (the owner).
A selection is global in nature (considered to belong to the user but be maintained by clients)
rather than being private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections. This
allows applications to implement the notion of current selection, which requires that notification
be sent to applications when they no longer own the selection. Applications that support selection
often highlight the current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This target
type can be used to control the transmitted representation of the contents. For example, if the
selection is “‘the last thing the user clicked on” and that is currently an image, then the target type
might specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example, asking
for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph selection, not the
text of the paragraph. The target type can also be used for other purposes. The protocol does not
constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Window owner:;

Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You can pass a window or
None.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Otherwise, the last-change time is
set to the specified time, with CurrentTime replaced by the current server time. If the owner
window is specified as None, then the owner of the selection becomes None (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the selection
and the current owner is not None, the current owner is sent a SelectionClear event. If the client
that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGetSelectionOwner returns the owner window, which is reported in Selection-
Request and SelectionClear events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

71

Window XGetSelectionOwner (display, selection)
Display *display;
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window that cur-
rently owns the specified selection. If no selection was specified, the function returns the constant
None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.
To request conversion of a selection, use XConvertSelection.

XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;

Atom property;
Window requestor;
Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom.
property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the specified target type:

. If the specified selection has an owner, the X server sends a SelectionRequest event to that
owner.
. If no owner for the specified selection exists, the X server generates a SelectionNotify

event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two predefined selec-
tion atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

72

Chapter 5

Pixmap and Cursor Functions

Once you have connected to an X server, you can use the Xlib functions to:
. Create and free pixmaps

. Create, recolor, and free cursors

5.1. Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-screen
resources that are used for various operations, such as defining cursors as tiling patterns or as the
source for certain raster operations. Most graphics requests can operate either on a window or on
a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap (display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions of the pixmap.
depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to pass an InputOnly window to the drawable
argument. The width and height arguments must be nonzero, or a BadValue error results. The
depth argument must be one of the depths supported by the screen of the specified drawable, or a
BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with other drawables of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

73

XFreePixmap (display, pixmap)
Display *display;

Pixmap pixmap;
display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X server frees the pixmap storage when there are no references to it. The pixmap
should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.2. Creating, Recoloring, and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in a visible win-
dow, it is set to the cursor defined for that window. If no cursor was defined for that window, the
cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot. The mask
pixmap determines the shape of the cursor and must be a depth of one. The source pixmap must
have a depth of one, and the colors determine the colors of the source. The hotspot defines the
point on the cursor that is reported when a pointer event occurs. There may be limitations
imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font for
creating cursors, but Xlib provides functions that you can use to create cursors from an arbitrary
font or from bitmaps.

To create a cursor from the standard cursor font, use XCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor (display, shape)
Display *display;
unsigned int shape;
display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the indi-
vidual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background (see XRecolorCursor). For further information
about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

74

Cursor XCreateGlyphCursor (display, source_font, mask_font, source_char, mask_char,
foreground_color, background_color)
Display *display;
Font source_font, mask_font;
unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color;

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the source
and mask bitmaps are obtained from the specified font glyphs. The source_char must be a
defined glyph in source_font, or a BadValue error results. If mask_font is given, mask_char
must be a defined glyph in mask_font, or a BadValue error results. The mask_font and character
are optional. The origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask_char is given, all pixels of the source are displayed. You can free
the fonts immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte] member in the most sig-
nificant byte and the byte2 member in the least significant byte.
XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

75

Cursor XCreatePixmapCursor (display, source, mask, foreground_color, background_color, x, y)
Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color;
XColor *background_color;
unsigned int x, y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

y Specify the x and y coordinates, which indicate the hotspot relative to the
source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with
it. The foreground and background RGB values must be specified using foreground_color and
background_color, even if the X server only has a StaticGray or GrayScale screen. The fore-
ground color is used for the pixels set to 1 in the source, and the background color is used for the
pixels set to 0. Both source and mask, if specified, must have depth one (or a BadMatch error
results) but can have any root. The mask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to 0 define which pix-
els are ignored. If no mask is given, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argument, or a BadMatch error
results. The hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made. Sub-
sequent drawing in the source or mask pixmap has an undefined effect on the cursor. The X
server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To determine useful cursor sizes, use XQueryBestCursor.

76

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width

height Specify the width and height of the cursor that you want the size information for.

width_return
height_return Return the best width and height that is closest to the specified width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor function pro-
vides a way to find out what size cursors are actually possible on the display. It returns the largest
size that can be displayed. Applications should be prepared to use smaller cursors on displays
that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.
To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is
being displayed on a screen, the change is visible immediately. The pixel members of the
XColor structures are ignored; only the RGB values are used.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

77

XFreeCursor (display, cursor)
Display *display;
Cursor cursor;
display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and the speci-
fied cursor. The cursor storage is freed when no other resource references it. The specified cursor
ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

78

Chapter 6

Color Management Functions

Each X window always has an associated colormap that provides a level of indirection between
pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space. The
RGB color space is device dependent; rendering an RGB value on differing output devices typi-
cally results in different colors. Xlib also provides a means for clients to specify color using
device-independent color spaces for consistent results across devices. Xlib supports device-inde-
pendent color spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

. Create, copy, and destroy a colormap
. Specify colors by name or value

. Allocate, modify, and free color cells
. Read entries in a colormap

. Convert between color spaces

. Control aspects of color conversion

. Query the color gamut of a screen

. Add new color spaces

All functions, types, and symbols in this chapter with the prefix “Xcms” are defined in
<X11/Xcms.h>. The remaining functions and types are defined in <X11/Xlib.h>.

Functions in this chapter manipulate the representation of color on the screen. For each possible
value that a pixel can take in a window, there is a color cell in the colormap. For example, if a
window is 4 bits deep, pixel values O through 15 are defined. A colormap is a collection of color
cells. A color cell consists of a triple of red, green, and blue (RGB) values. The hardware
imposes limits on the number of significant bits in these values. As each pixel is read out of dis-
play memory, the pixel is looked up in a colormap. The RGB value of the cell determines what
color is displayed on the screen. On a grayscale display with a black-and-white monitor, the val-
ues are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells. In which case, the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, they are exclusively owned by the client, and the color associated
with the pixel value can be changed at will. Cells must be allocated (and, if read/write, initialized
with an RGB value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are insufficient colormap resources in the dis-
play, some windows will display in their true colors, and others will display with incorrect colors.
A window manager usually controls which windows are displayed in their true colors if more
than one colormap is required for the color resources the applications are using. At any time,

79

there is a set of installed colormaps for a screen. Windows using one of the installed colormaps
display with true colors, and windows using other colormaps generally display with incorrect col-
ors. You can control the set of installed colormaps by using XInstallColormap and XUninstall-
Colormap.

Colormaps are local to a particular screen. Screens always have a default colormap, and pro-
grams typically allocate cells out of this colormap. Generally, you should not write applications
that monopolize color resources. Although some hardware supports multiple colormaps installed
at one time, many of the hardware displays built today support only a single installed colormap,
so the primitives are written to encourage sharing of colormap entries between applications.

The DefaultColormap macro returns the default colormap. The DefaultVisual macro returns
the default visual type for the specified screen. Possible visual types are StaticGray,
GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

6.1. Color Structures

Functions that operate only on RGB color space values use an XColor structure, which contains:

typedef struct {

unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

The red, green, and blue values are always in the range 0 to 65535 inclusive, independent of the
number of bits actually used in the display hardware. The server scales these values down to the
range used by the hardware. Black is represented by (0,0,0), and white is represented by
(65535,65535,65535). In some functions, the flags member controls which of the red, green, and
blue members is used and can be the inclusive OR of zero or more of DoRed, DoGreen, and
DoBlue.

Functions that operate on all color space values use an XemsColor structure. This structure con-
tains a union of substructures, each supporting color specification encoding for a particular color
space. Like the XColor structure, the XemsColor structure contains pixel and color specifica-
tion information (the spec member in the XcmsColor structure).

80

typedef unsigned long XcmsColorFormat;/* Color Specification Format */

typedef struct {
union {
XcmsRGB RGB;
XcmsRGBi RGBi;
XemsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XemsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
} spec;
unsigned long pixel;
XcmsColorFormat format;
} XemsColor; /* Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the spec
member is identified by the format member, which is of type XcmsColorFormat. The following
macros define standard formats.

#define XcmsUndefinedFormat 0x00000000

#define XcmsCIEXYZFormat 0x00000001 /* CIE XYZ */
#define XcmsCIEuvYFormat 0x00000002 /¥ CIEuv’'Y */
#define XcmsCIExyYFormat 0x00000003 /* CIE xyY */
#define XcmsCIELabFormat 0x00000004 /* CIE L*a*b* */
#define XcmsCIELuvFormat 0x00000005 /* CIE L*u*v* */
#define XcmsTekHV CFormat 0x00000006 /* TekHVC */
#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for device-dependent
spaces by the 32nd bit. If this bit is set, it indicates that the color specification is in a device-
dependent form; otherwise, it is in a device-independent form. If the 31st bit is set, this indicates
that the color space has been added to Xlib at run time (see section 6.12.4). The format value for
a color space added at run time may be different each time the program is executed. If references
to such a color space must be made outside the client (for example, storing a color specification in
a file), then reference should be made by color space string prefix (see XcmsFormatOfPrefix
and XcmsPrefixOfFormat).

Data types that describe the color specification encoding for the various color spaces are defined
as follows:

81

typedef double XcmsFloat;

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;
} XcmsRGB;

typedef struct {
XcmsFloat red;
XcmsFloat green;
XcmsFloat blue;
} XcmsRGB4;

typedef struct {
XcmsFloat X;
XcmsFloat Y;
XcmsFloat Z;
} XecmsCIEXYZ;

typedef struct {
XcmsFloat u_prime;
XcmsFloat v_prime;
XcmsFloat Y;

} XemsCIEuvY;

typedef struct {
XcmsFloat x;
XcmsFloat y;
XcmsFloat Y;
} XemsCIExyY;

typedef struct {
XcmsFloat L_star;
XcmsFloat a_star;
XcmsFloat b_star;
} XcmsCIELab;

typedef struct {
XcmsFloat L_star;
XcmsFloat u_star;
XcmsFloat v_star;
} XcmsCIELuv;

typedef struct {
XcmsFloat H;
XcmsFloat V;

/* 0x0000 to Oxffff */
/* 0x0000 to Oxffff */
/* 0x0000 to Oxffff */
/* RGB Device */

/%0.0to 1.0 */
/¥0.0to 1.0 */
/%0.0to 1.0 */
/* RGB Intensity */

/%0.0to 1.0 */

/* CIE XYZ */

/%0.0t070.6 */
/%0.0t070.6 */
/%0.0to 1.0 */

/*CIEuwv’'Y */

/%0.0to =75 */
/*%0.0 to ~.85 */
/%0.0to 1.0 */
/* CIE xyY */

/%0.0 to 100.0 */

/* CIE L*a*b* */

/%0.0 to 100.0 */

/* CIE L*u*v* */

/% 0.0 to 360.0 */
/*#0.0 to 100.0 */

82

XcmsFloat C; /0.0 to 100.0 */
} XcmsTekHVC; /* TekHVC */

typedef struct {
XcmsFloat padO;
XcmsFloat padl;
XcmsFloat pad2;
XcmsFloat pad3;
} XcmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:
. RGB Intensity (XemsRGBi)

Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0, where 1.0
indicates full intensity, 0.5 half intensity, and so on.

. RGB Device (XemsRGB)

Red, green, and blue values appropriate for the specified output device. XecmsRGB values
are of type unsigned short, scaled from O to 65535 inclusive, and are interchangeable with
the red, green, and blue values in an XColor structure.

It is important to note that RGB Intensity values are not gamma corrected values. In contrast,
RGB Device values generated as a result of converting color specifications are always gamma
corrected, and RGB Device values acquired as a result of querying a colormap or passed in by the
client are assumed by Xlib to be gamma corrected. The term RGB value in this manual always
refers to an RGB Device value.

6.2. Color Strings

Xlib provides a mechanism for using string names for colors. A color string may either contain
an abstract color name or a numerical color specification. Color strings are case-insensitive.

Color strings are used in the following functions:
. XAllocNamedColor

. XcmsAllocNamedColor

. XLookupColor

. XcmsLookupColor

. XParseColor

. XStoreNamedColor

Xlib supports the use of abstract color names, for example, red or blue. A value for this abstract
name is obtained by searching one or more color name databases. Xlib first searches zero or
more client-side databases; the number, location, and content of these databases is implementa-
tion-dependent and might depend on the current locale. If the name is not found, Xlib then looks
for the color in the X server’s database. If the color name is not in the Host Portable Character
Encoding, the result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values in the following
syntax:

83

<color_space_name>:<value>/.../<value>

The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493"
"RGBi:1.0/0.0/0.0"

"1gb:00/£/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard color space in
the following sections.

6.2.1. RGB Device String Specification

An RGB Device specification is identified by the prefix “rgb:”” and conforms to the following
syntax:

rgb:<red>/<green>/<blue>

<red>, <green>, <blue> := h | hh | hhh | hhhh
h := single hexadecimal digits (case insignificant)

Note that £ indicates the value scaled in 4 bits, ik the value scaled in 8 bits, hhh the value scaled
in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are the strings “rgb:ea/75/52” and “‘rgb:ccc/320/320”, but mixed numbers of
hexadecimal digit strings (“‘rgb:ff/a5/0” and “‘rgb:ccc/32/0”’) are also allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its continued use is
not encouraged. The syntax is an initial sharp sign character followed by a numeric specification,
in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are specified,
they represent the most significant bits of the value (unlike the “rgb:” syntax, in which values are
scaled). For example, the string “#3a7”’ is the same as “#3000a0007000.

6.2.2. RGB Intensity String Specification

An RGB intensity specification is identified by the prefix “rgbi:”” and conforms to the following
syntax:

rgbi:<red>/<green>/<blue>

Note that red, green, and blue are floating-point values between 0.0 and 1.0, inclusive. The input
format for these values is an optional sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E or e followed by a possibly signed integer
string.

84

6.2.3. Device-Independent String Specifications

The standard device-independent string specifications have the following syntax:

CIEXYZ:<X>/<Y>/<Z>
CIEuvY:<u>/<v>/<Y>
CIExyY:<x>/<y>/<Y>
CIELab:<L>/<a>/
CIELuv:<L>/<u>/<v>
TekHVC:<H>/<V>/<C>

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating-point values. The syntax for these
values is an optional plus or minus sign, a string of digits possibly containing a decimal point, and
an optional exponent field consisting of an “E” or “‘e”” followed by an optional plus or minus fol-
lowed by a string of digits.

6.3. Color Conversion Contexts and Gamut Mapping

When Xlib converts device-independent color specifications into device-dependent specifications
and vice versa, it uses knowledge about the color limitations of the screen hardware. This infor-
mation, typically called the device profile, is available in a Color Conversion Context (CCC).

Because a specified color may be outside the color gamut of the target screen and the white point
associated with the color specification may differ from the white point inherent to the screen, Xlib
applies gamut mapping when it encounters certain conditions:

. Gamut compression occurs when conversion of device-independent color specifications to
device-dependent color specifications results in a color out of the target screen’s gamut.

. White adjustment occurs when the inherent white point of the screen differs from the white
point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used by the color
space conversion routines. Client data is also stored in the CCC for each callback. The CCC also
contains the white point the client assumes to be associated with color specifications (that is, the
Client White Point). The client can specify the gamut handling callbacks and client data as well
as the Client White Point. Xlib does not preclude the X client from performing other forms of
gamut handling (for example, gamut expansion); however, Xlib does not provide direct support
for gamut handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to an Xlib function, you are indirectly specifying a
CCC. There is a default CCC associated with each screen. Newly created CCCs inherit attributes
from the default CCC, so the default CCC attributes can be modified to affect new CCCs.

Xcms functions in which gamut mapping can occur return Status and have specific status values
defined for them, as follows:

. XcmsFailure indicates that the function failed.

. XcmsSuccess indicates that the function succeeded. In addition, if the function performed
any color conversion, the colors did not need to be compressed.

. XcmsSuccessWithCompression indicates the function performed color conversion and at
least one of the colors needed to be compressed. The gamut compression method is deter-
mined by the gamut compression procedure in the CCC that is specified directly as a func-
tion argument or in the CCC indirectly specified by means of the colormap argument.

85

6.4. Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap (display, w, visual, alloc)
Display *display;

Window w;
Visual *visual;
int alloc;
display Specifies the connection to the X server.
w Specifies the window on whose screen you want to create a colormap.
visual Specifies a visual type supported on the screen. If the visual type is not one sup-
ported by the screen, a BadMatch error results.
alloc Specifies the colormap entries to be allocated. You can pass AllocNone or Allo-
cAll.

The XCreateColormap function creates a colormap of the specified visual type for the screen on
which the specified window resides and returns the colormap ID associated with it. Note that the
specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayScale, Pseu-
doColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the entries have
defined values, but those values are specific to the visual and are not defined by X. For Stat-
icGray, StaticColor, and TrueColor, alloc must be AllocNone, or a BadMatch error results.
For the other visual classes, if alloc is AllocNone, the colormap initially has no allocated entries,
and clients can allocate them. For information about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all allocated
entries are undefined. For GrayScale and PseudoColor, the effect is as if an XAllocColorCells
call returned all pixel values from zero to N — 1, where N is the colormap entries value in the
specified visual. For DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel
value of zero and red_mask, green_mask, and blue_mask values containing the same bits as the
corresponding masks in the specified visual. However, in all cases, none of these entries can be
freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has failed
because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and for the
same screen as the specified colormap and returns the new colormap ID. It also moves all of the
client’s existing allocation from the specified colormap to the new colormap with their color

86

values intact and their read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in the new colormap are undefined. If the speci-
fied colormap was created by the client with alloc set to AllocAll, the new colormap is also cre-
ated with AllocAll, all color values for all entries are copied from the specified colormap, and
then all entries in the specified colormap are freed. If the specified colormap was not created by
the client with AllocAll, the allocations to be moved are all those pixels and planes that have
been allocated by the client using XAllocColor, XAllocNamedColor, XAllocColorCells, or
XAllocColorPlanes and that have not been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.
To destroy a colormap, use XFreeColormap.

XFreeColormap (display, colormap)
Display *display;
Colormap colormap;
display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID and the
colormap and frees the colormap storage. However, this function has no effect on the default col-
ormap for a screen. If the specified colormap is an installed map for a screen, it is uninstalled
(see XUninstallColormap). If the specified colormap is defined as the colormap for a window
(by XCreateWindow, XSetWindowColormap, or XChangeWindowAttributes), XFreeCol-
ormap changes the colormap associated with the window to None and generates a Colormap-
Notify event. X does not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

6.5. Mapping Color Names to Values

To map a color name to an RGB value, use XLookupColor.

87

Status XLookupColor (display, colormap, color_name, exact_def _return, screen_def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *exact_def _return, *screen_def _return;

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

exact_def _return
Returns the exact RGB values.

screen_def _return
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the screen asso-
ciated with the specified colormap. It returns both the exact color values and the closest values
provided by the screen with respect to the visual type of the specified colormap. If the color
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter. XLookupColor returns nonzero if the name is
resolved; otherwise, it returns zero.

XLookupColor can generate a BadColor error.
To map a color name to the exact RGB value, use XParseColor.

Status XParseColor(display, colormap, spec, exact_def _return)
Display *display;
Colormap colormap;
char *spec;
XColor *exact_def _return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
spec Specifies the color name string; case is ignored.

exact_def return
Returns the exact color value for later use and sets the DoRed, DoGreen, and
DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the screen associ-
ated with the specified colormap. It returns the exact color value. If the color name is not in the
Host Portable Character Encoding, the result is implementation-dependent. Use of uppercase or
lowercase does not matter. XParseColor returns nonzero if the name is resolved; otherwise, it
returns zero.

XParseColor can generate a BadColor error.

To map a color name to a value in an arbitrary color space, use XecmsLookupColor.

88

Status XcmsLookupColor (display, colormap, color_string, color_exact_return, color_screen_return,
result_format)
Display *display;
Colormap colormap;
char *color_string;
XcmsColor *color_exact_return, *color_screen_return;
XcmsColorFormat result_format;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_string Specifies the color string.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

color_screen_return
Returns the color that can be reproduced on the screen.

result_format Specifies the color format for the returned color specifications
(color_screen_return and color_exact_return arguments). If the format is Xem-
sUndefinedFormat and the color string contains a numerical color specification,
the specification is returned in the format used in that numerical color specifica-
tion. If the format is XcmsUndefinedFormat and the color string contains a
color name, the specification is returned in the format used to store the color in
the database.

The XcmsLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest val-
ues provided by the screen with respect to the visual type of the specified colormap. The values
are returned in the format specified by result_format. If the color name is not in the Host Portable
Character Encoding, the result is implementation-dependent. Use of uppercase or lowercase does
not matter. XcmsLookupColor returns XemsSuccess or XemsSuccessWithCompression if
the name is resolved; otherwise, it returns XcmsFailure. If XcmsSuccessWithCompression is
returned, the color specification returned in color_screen_return is the result of gamut compres-
sion.

6.6. Allocating and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries, one pixel value at a
time, or read/write, where you can allocate a number of color cells and planes simultaneously. A
read-only cell has its RGB value set by the server. Read/write cells do not have defined colors
initially; functions described in the next section must be used to store values into them. Although
it is possible for any client to store values into a read/write cell allocated by another client,
read/write cells normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each allocation and free-
ing of the cell by clients. When the last client frees a shared cell, the cell is finally deallocated. If
a single client allocates the same read-only cell multiple times, the server counts each such alloca-
tion, not just the first one.

To allocate a read-only color cell with an RGB value, use XAllocColor.

89

Status XAllocColor (display, colormap, screen_in_out)
Display *display;
Colormap colormap;
XColor *screen_in_out;

display Specifies the connection to the X server.
colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the closest
RGB value supported by the hardware. XAllocColor returns the pixel value of the color closest
to the specified RGB elements supported by the hardware and returns the RGB value actually
used. The corresponding colormap cell is read-only. In addition, XAllocColor returns nonzero
if it succeeded or zero if it failed. Multiple clients that request the same effective RGB value can
be assigned the same read-only entry, thus allowing entries to be shared. When the last client
deallocates a shared cell, it is deallocated. XAllocColor does not use or affect the flags in the
XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell with a color in arbitrary format, use XcmsAllocColor.

Status XcmsAllocColor (display, colormap , color_in_out, result_format)
Display *display;
Colormap colormap;
XcmsColor *color_in_out;
XcmsColorFormat result_format;

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_in_out Specifies the color to allocate and returns the pixel and color that is actually used
in the colormap.

result_format Specifies the color format for the returned color specification.

The XcemsAllocColor function is similar to XAllocColor except the color can be specified in
any format. The XcmsAllocColor function ultimately calls XAllocColor to allocate a read-only
color cell (colormap entry) with the specified color. XcmsAllocColor first converts the color
specified to an RGB value and then passes this to XAllocColor. XcmsAllocColor returns the
pixel value of the color cell and the color specification actually allocated. This returned color
specification is the result of converting the RGB value returned by XAllocColor into the format
specified with the result_format argument. If there is no interest in a returned color specification,
unnecessary computation can be bypassed if result_format is set to XemsRGBFormat. The cor-
responding colormap cell is read-only. If this routine returns XcmsFailure, the color_in_out
color specification is left unchanged.

XcmsAllocColor can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color supported by the

90

hardware in RGB format, use XAllocNamedColor.

Status XAllocNamedColor (display, colormap, color_name, screen_def_return, exact_def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *screen_def return, *exact_def _return;

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

screen_def _return
Returns the closest RGB values provided by the hardware.

exact_def _return
Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the clos-
est color supported by the screen. The allocated color cell is read-only. The pixel value is
returned in screen_def return. If the color name is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does not matter. If
screen_def_return and exact_def_return point to the same structure, the pixel field will be set cor-
rectly, but the color values are undefined. XAllocNamedColor returns nonzero if a cell is allo-
cated; otherwise, it returns zero.

XAllocNamedColor can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color supported by the
hardware in an arbitrary format, use XcmsAllocNamedColor.

91

Status XcmsAllocNamedColor (display, colormap, color_string, color_screen_return, color_exact_return,
result_format)
Display *display;
Colormap colormap;
char *color_string;
XcmsColor *color_screen_return;
XcmsColor *color_exact_return;
XcmsColorFormat result_format;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_string ~ Specifies the color string whose color definition structure is to be returned.

color_screen_return
Returns the pixel value of the color cell and color specification that actually is
stored for that cell.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

result_format Specifies the color format for the returned color specifications
(color_screen_return and color_exact_return arguments). If the format is Xcm-
sUndefinedFormat and the color string contains a numerical color specification,
the specification is returned in the format used in that numerical color specifica-
tion. If the format is XemsUndefinedFormat and the color string contains a
color name, the specification is returned in the format used to store the color in
the database.

The XcmsAllocNamedColor function is similar to XAllocNamedColor except that the color
returned can be in any format specified. This function ultimately calls XAllocColor to allocate a
read-only color cell with the color specified by a color string. The color string is parsed into an
XcmsColor structure (see XemsLookupColor), converted to an RGB value, and finally passed
to XAllocColor. If the color name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Use of uppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact specification) and
the actual color specification stored (screen specification). This screen specification is the result
of converting the RGB value returned by XAllocColor into the format specified in result_format.
If there is no interest in a returned color specification, unnecessary computation can be bypassed
if result_format is set to XcmsRGBFormat. If color_screen_return and color_exact_return point
to the same structure, the pixel field will be set correctly, but the color values are undefined.

XcmsAllocNamedColor can generate a BadColor error.

To allocate read/write color cell and color plane combinations for a PseudoColor model, use
XAllocColorCells.

92

Status XAllocColorCells (display, colormap, contig, plane_masks_return, nplanes,
pixels_return, npixels)
Display *display;
Colormap colormap;
Bool contig;
unsigned long plane_masks_return|];
unsigned int nplanes;
unsigned long pixels_return|];
unsigned int npixels;

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes must be contiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane masks
array.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the pixels_return
array.

The XAllocColorCells function allocates read/write color cells. The number of colors must be
positive and the number of planes nonnegative, or a BadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. By ORing
together each pixel with zero or more masks, ncolors * 2"7/#"¢* distinct pixels can be produced.
All of these are allocated writable by the request. For GrayScale or PseudoColor, each mask
has exactly one bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is
True and if all masks are ORed together, a single contiguous set of bits set to 1 will be formed
for GrayScale or PseudoColor and three contiguous sets of bits set to 1 (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are undefined. XAllocCol-
orCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAllocColorPlanes.

93

Status XAllocColorPlanes(display, colormap, contig, pixels_return, ncolors, nreds, ngreens,
nblues, rmask_return, gmask_return, bmask_return)
Display *display;
Colormap colormap;
Bool contig;
unsigned long pixels_return|[];
int ncolors;
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes returns the pixel values in
this array.

ncolors Specifies the number of pixel values that are to be returned in the pixels_return
array.

nreds

ngreens

nblues

Specify the number of red, green, and blue planes. The value you pass must be
nonnegative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonnegative, or a
BadValue error results. If ncolors colors, nreds reds, ngreens greens, and nblues blues are
requested, ncolors pixels are returned; and the masks have nreds, ngreens, and nblues bits set to 1,
respectively. If contig is True, each mask will have a contiguous set of bits set to 1. No mask
will have any bits set to 1 in common with any other mask or with any of the pixels. For Direct-
Color, each mask will lie within the corresponding pixel subfield. By ORing together subsets of
masks with each pixel value, ncolors * 2redstngreenstnblues) qigtinct pixel values can be produced.
All of these are allocated by the request. However, in the colormap, there are only ncolors * 2%
independent red entries, ncolors * 2"8"“™ independent green entries, and ncolors * 25 inde-
pendent blue entries. This is true even for PseudoColor. When the colormap entry of a pixel
value is changed (using XStoreColors, XStoreColor, or XStoreNamedColor), the pixel is
decomposed according to the masks, and the corresponding independent entries are updated.
XAllocColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

To free colormap cells, use XFreeColors.

94

XFreeColors(display, colormap, pixels, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels[];
int npixels;
unsigned long planes;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified colormap.
npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the pixels
array. The planes argument should not have any bits set to 1 in common with any of the pixels.
The set of all pixels is produced by ORing together subsets of the planes argument with the pix-
els. The request frees all of these pixels that were allocated by the client (using XAllocColor,
XAllocNamedColor, XAllocColorCells, and XAllocColorPlanes). Note that freeing an indi-
vidual pixel obtained from XAllocColorPlanes may not actually allow it to be reused until all of
its related pixels are also freed. Similarly, a read-only entry is not actually freed until it has been
freed by all clients, and if a client allocates the same read-only entry multiple times, it must free
the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or more
pixels produce an error. If a specified pixel is not a valid index into the colormap, a BadValue
error results. If a specified pixel is not allocated by the client (that is, is unallocated or is only
allocated by another client) or if the colormap was created with all entries writable (by passing
AllocAll to XCreateColormap), a BadAccess error results. If more than one pixel is in error,
the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

6.7. Modifying and Querying Colormap Cells
To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of the XColor structure. You specified this value in the pixel member of the XColor
structure. This pixel value must be a read/write cell and a valid index into the colormap. If a

specified pixel is not a valid index into the colormap, a BadValue error results. XStoreColor

95

also changes the red, green, and/or blue color components. You specify which color components
are to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags member of the
XColor structure. If the colormap is an installed map for its screen, the changes are visible
immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.
To store multiple RGB values in multiple colormap cells, use XStoreColors.

XStoreColors(display, colormap, color, ncolors)
Display *display;
Colormap colormap;
XColor color[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified in the
pixel members of the XColor structures. You specify which color components are to be changed
by setting DoRed, DoGreen, and/or DoBlue in the flags member of the XColor structures. If
the colormap is an installed map for its screen, the changes are visible immediately. XStoreCol-
ors changes the specified pixels if they are allocated writable in the colormap by any client, even
if one or more pixels generates an error. If a specified pixel is not a valid index into the colormap,
a BadValue error results. If a specified pixel either is unallocated or is allocated read-only, a
BadAccess error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.
To store a color of arbitrary format in a single colormap cell, use XcmsStoreColor.

Status XcmsStoreColor (display, colormap, color)
Display *display;
Colormap colormap;
XcmsColor *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color cell and the color to store. Values specified in this Xcms-

Color structure remain unchanged on return.

The XcemsStoreColor function converts the color specified in the XemsColor structure into
RGB values. It then uses this RGB specification in an XColor structure, whose three flags
(DoRed, DoGreen, and DoBlue) are set, in a call to XStoreColor to change the color cell spec-
ified by the pixel member of the XemsColor structure. This pixel value must be a valid index for
the specified colormap, and the color cell specified by the pixel value must be a read/write cell. If
the pixel value is not a valid index, a BadValue error results. If the color cell is unallocated or is

96

allocated read-only, a BadAccess error results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note that XStoreColor has no return value; therefore, an XemsSuccess return value from this
function indicates that the conversion to RGB succeeded and the call to XStoreColor was made.
To obtain the actual color stored, use XcmsQueryColor. Because of the screen’s hardware limi-
tations or gamut compression, the color stored in the colormap may not be identical to the color
specified.

XcmsStoreColor can generate BadAccess, BadColor, and BadValue errors.
To store multiple colors of arbitrary format in multiple colormap cells, use XcmsStoreColors.

Status XcmsStoreColors (display, colormap, colors, ncolors, compression_flags_return)
Display *display;
Colormap colormap;
XcmsColor colors|];
int ncolors;
Bool compression_flags_return|[];

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors Specifies the color specification array of XemsColor structures, each specifying

a color cell and the color to store in that cell. Values specified in the array remain
unchanged upon return.

ncolors Specifies the number of XemsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values indicating compression status. If a non-
NULL pointer is supplied, each element of the array is set to True if the corre-
sponding color was compressed and False otherwise. Pass NULL if the com-
pression status is not useful.

The XcemsStoreColors function converts the colors specified in the array of XemsColor struc-
tures into RGB values and then uses these RGB specifications in XColor structures, whose three
flags (DoRed, DoGreen, and DoBlue) are set, in a call to XStoreColors to change the color
cells specified by the pixel member of the corresponding XemsColor structure. Each pixel value
must be a valid index for the specified colormap, and the color cell specified by each pixel value
must be a read/write cell. If a pixel value is not a valid index, a BadValue error results. If a
color cell is unallocated or is allocated read-only, a BadAccess error results. If more than one
pixel is in error, the one that gets reported is arbitrary. If the colormap is an installed map for its
screen, the changes are visible immediately.

Note that XStoreColors has no return value; therefore, an XcmsSuccess return value from this
function indicates that conversions to RGB succeeded and the call to XStoreColors was made.
To obtain the actual colors stored, use XemsQueryColors. Because of the screen’s hardware
limitations or gamut compression, the colors stored in the colormap may not be identical to the
colors specified.

XcmsStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, use XStoreNamedColor.

97

XStoreNamedColor (display, colormap, color, pixel, flags)
Display *display;
Colormap colormap;
char *color;
unsigned long pixel;

int flags;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen associated
with the colormap and stores the result in the specified colormap. The pixel argument determines
the entry in the colormap. The flags argument determines which of the red, green, and blue com-
ponents are set. You can set this member to the bitwise inclusive OR of the bits DoRed,
DoGreen, and DoBlue. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Use of uppercase or lowercase does not matter. If the speci-
fied pixel is not a valid index into the colormap, a BadValue error results. If the specified pixel
either is unallocated or is allocated read-only, a BadAccess error results.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue errors.

The XQueryColor and XQueryColors functions take pixel values in the pixel member of
XColor structures and store in the structures the RGB values for those pixels from the specified
colormap. The values returned for an unallocated entry are undefined. These functions also set
the flags member in the XColor structure to all three colors. If a pixel is not a valid index into
the specified colormap, a BadValue error results. If more than one pixel is in error, the one that
gets reported is arbitrary.

To query the RGB value of a single colormap cell, use XQueryColor.

XQueryColor(display, colormap, def _in_out)
Display *display;
Colormap colormap;
XColor *def_in_out;

display Specifies the connection to the X server.
colormap Specifies the colormap.
def_in_out Specifies and returns the RGB values for the pixel specified in the structure.

The XQueryColor function returns the current RGB value for the pixel in the XColor structure
and sets the DoRed, DoGreen, and DoBlue flags.
XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of multiple colormap cells, use XQueryColors.

98

XQueryColors(display, colormap, defs_in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs_in_out|];
int ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for the pixel specified
in the structure.

ncolors Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB value for each pixel in each XColor structure and
sets the DoRed, DoGreen, and DoBlue flags in each structure.

XQueryColors can generate BadColor and BadValue errors.
To query the color of a single colormap cell in an arbitrary format, use XcmsQueryColor.

Status XcmsQueryColor (display, colormap, color_in_out, result_format)
Display *display;
Colormap colormap;
XcmsColor *color_in_out;
XcmsColorFormat result_format;
display Specifies the connection to the X server.
colormap Specifies the colormap.

color_in_out Specifies the pixel member that indicates the color cell to query. The color speci-
fication stored for the color cell is returned in this XemsColor structure.

result_format Specifies the color format for the returned color specification.

The XemsQueryColor function obtains the RGB value for the pixel value in the pixel member
of the specified XemsColor structure and then converts the value to the target format as specified
by the result_format argument. If the pixel is not a valid index in the specified colormap, a Bad-
Value error results.

XcmsQueryColor can generate BadColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format, use XcmsQueryColors.

99

Status XcmsQueryColors (display, colormap, colors_in_out, ncolors, result_format)
Display *display;
Colormap colormap;
XcmsColor colors_in_out[];
unsigned int ncolors;
XcmsColorFormat result_format;
display Specifies the connection to the X server.
colormap Specifies the colormap.

colors_in_out Specifies an array of XemsColor structures, each pixel member indicating the
color cell to query. The color specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the color-specification array.

result_format Specifies the color format for the returned color specification.

The XemsQueryColors function obtains the RGB values for pixel values in the pixel members
of XemsColor structures and then converts the values to the target format as specified by the
result_format argument. If a pixel is not a valid index into the specified colormap, a BadValue
error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XcmsQueryColors can generate BadColor and BadValue errors.

6.8. Color Conversion Context Functions
This section describes functions to create, modify, and query Color Conversion Contexts (CCCs).

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to a function, you are indirectly specifying a CCC.
The CCC attributes that can be modified by the X client are:

. Client White Point
. Gamut compression procedure and client data
. White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attributes for subse-
quently created CCCs can be defined by changing the CCC attributes of the default CCC. There
is a default CCC associated with each screen.

6.8.1. Getting and Setting the Color Conversion Context of a Colormap
To obtain the CCC associated with a colormap, use XemsCCCOfColormap.

XemsCCC XemsCCCOfColormap (display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XemsCCCOfColormap function returns the CCC associated with the specified colormap.
Once obtained, the CCC attributes can be queried or modified. Unless the CCC associated with

100

the specified colormap is changed with XemsSetCCCOfColormap, this CCC is used when the
specified colormap is used as an argument to color functions.

To change the CCC associated with a colormap, use XcmsSetCCCOfColormap.

XemsCCC XemsSetCCCOfColormap (display, colormap, ccc)
Display *display;
Colormap colormap;

XemsCCC ccc;
display Specifies the connection to the X server.
colormap Specifies the colormap.
cce Specifies the CCC.

The XemsSetCCCOfColormap function changes the CCC associated with the specified col-
ormap. It returns the CCC previously associated with the colormap. If they are not used again in
the application, CCCs should be freed by calling XemsFreeCCC. Several colormaps may share
the same CCC without restriction; this includes the CCCs generated by Xlib with each colormap.
Xlib, however, creates a new CCC with each new colormap.

6.8.2. Obtaining the Default Color Conversion Context

You can change the default CCC attributes for subsequently created CCCs by changing the CCC
attributes of the default CCC. A default CCC is associated with each screen.

To obtain the default CCC for a screen, use XecmsDefaultCCC.

XemsCCC XcemsDefaultCCC (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

The XcmsDefaultCCC function returns the default CCC for the specified screen. Its visual is
the default visual of the screen. Its initial gamut compression and white point adjustment proce-
dures as well as the associated client data are implementation specific.

6.8.3. Color Conversion Context Macros

Applications should not directly modify any part of the XemsCCC. The following lists the C
language macros, their corresponding function equivalents for other language bindings, and what
data they both can return.

101

DisplayOfCCC (ccc)
XcemsCCC ccc;,

Display *XcmsDisplayOfCCC (ccc)
XemsCCC ccc;

ccc Specifies the CCC.

Both return the display associated with the specified CCC.

Visual OfCCC (ccc)
XcemsCCC ccc;,

Visual *XcmsVisual OfCCC (ccc)
XemsCCC ccc;

cce Specifies the CCC.

Both return the visual associated with the specified CCC.

ScreenNumberOfCCC (ccc)
XcemsCCC ccc;,

int XcmsScreenNumberOfCCC (ccc)
XemsCCC ccc;

cce Specifies the CCC.

Both return the number of the screen associated with the specified CCC.

ScreenWhitePointOfCCC (ccc)
XemsCCC ccc;

XcmsColor *XcmsScreenWhitePointOfCCC (ccc)
XemsCCC ccc;

cce Specifies the CCC.

Both return the white point of the screen associated with the specified CCC.

102

ClientWhitePointOfCCC (ccc)
XcemsCCC ccc;,

XcmsColor *XcmsClientWhitePointOfCCC (ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

6.8.4. Modifying Attributes of a Color Conversion Context
To set the Client White Point in the CCC, use XcmsSetWhitePoint.

Status XcmsSetWhitePoint(ccc, color)
XemsCCC ccc;
XcmsColor *color;

cce Specifies the CCC.
color Specifies the new Client White Point.

The XcmsSetWhitePoint function changes the Client White Point in the specified CCC. Note
that the pixel member is ignored and that the color specification is left unchanged upon return.
The format for the new white point must be XemsCIEXYZFormat, XcmsCIEuvYFormat,
XcemsCIExyYFormat, or XemsUndefinedFormat. If the color argument is NULL, this func-
tion sets the format component of the Client White Point specification to XcmsUndefinedFor-
mat, indicating that the Client White Point is assumed to be the same as the Screen White Point.

This function returns nonzero status if the format for the new white point is valid; otherwise, it
returns zero.

To set the gamut compression procedure and corresponding client data in a specified CCC, use
XcmsSetCompressionProc.

XcmsCompressionProc XcmsSetCompressionProc(ccc, compression_proc, client_data)
XemsCCC ccc;
XcemsCompressionProc compression_proc;
XPointer client_data;

ccc Specifies the CCC.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screen’s color gamut. If NULL is specified and a function using this
CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

client_data Specifies client data for the gamut compression procedure or NULL.

The XcmsSetCompressionProc function first sets the gamut compression procedure and client

103

data in the specified CCC with the newly specified procedure and client data and then returns the
old procedure.

To set the white point adjustment procedure and corresponding client data in a specified CCC, use
XcmsSetWhiteAdjustProc.

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProc(ccc, white_adjust_proc, client_data)
XemsCCC ccc;
XcmsWhite AdjustProc white_adjust_proc;
XPointer client_data;,

ccc Specifies the CCC.

white_adjust_proc
Specifies the white point adjustment procedure.

client_data Specifies client data for the white point adjustment procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment procedure and
client data in the specified CCC with the newly specified procedure and client data and then
returns the old procedure.

6.8.5. Creating and Freeing a Color Conversion Context

You can explicitly create a CCC within your application by calling XcmsCreateCCC. These
created CCCs can then be used by those functions that explicitly call for a CCC argument. Old
CCCs that will not be used by the application should be freed using XemsFreeCCC.

To create a CCC, use XemsCreateCCC.

104

XemsCCC XcmsCreateCCC (display, screen_number, visual, client_white_point, compression_proc,
compression_client_data, white_adjust_proc, white_adjust_client_data)
Display *display;
int screen_number,
Visual *visual,;
XcmsColor *client_white_point;
XcmsCompressionProc compression_proc;
XPointer compression_client_data;
XcemsWhiteAdjustProc white_adjust_proc;
XPointer white_adjust_client_data;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

visual Specifies the visual type.

client_white_point
Specifies the Client White Point. If NULL is specified, the Client White Point is
to be assumed to be the same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screen’s color gamut. If NULL is specified and a function using this
CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

compression_client_data
Specifies client data for use by the gamut compression procedure or NULL.

white_adjust_proc
Specifies the white adjustment procedure that is to be applied when the Client
White Point differs from the Screen White Point. NULL indicates that no white
point adjustment is desired.

white_adjust_client_data
Specifies client data for use with the white point adjustment procedure or NULL.

The XemsCreateCCC function creates a CCC for the specified display, screen, and visual.
To free a CCC, use XemsFreeCCC.

void XcmsFreeCCC(ccc)
XemsCCC ccc;

cce Specifies the CCC.

The XcemsFreeCCC function frees the memory used for the specified CCC. Note that default
CCCs and those currently associated with colormaps are ignored.

105

6.9. Converting between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single destination for-
mat, use XcmsConvertColors.

Status XcmsConvertColors(ccc, colors_in_out, ncolors, target_format, compression_flags_return)
XcemsCCC ccc;,
XcmsColor colors_in_out[];
unsigned int ncolors;
XcmsColorFormat target_format;
Bool compression_flags_return|];

ccc Specifies the CCC. If conversion is between device-independent color spaces
only (for example, TekHVC to CIELuv), the CCC is necessary only to specify
the Client White Point.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and remain
unchanged upon return.

ncolors Specifies the number of XemsColor structures in the color-specification array.
target_format Specifies the target color specification format.

compression_flags_return
Returns an array of Boolean values indicating compression status. If a non-
NULL pointer is supplied, each element of the array is set to True if the corre-
sponding color was compressed and False otherwise. Pass NULL if the com-
pression status is not useful.

The XemsConvertColors function converts the color specifications in the specified array of
XcemsColor structures from their current format to a single target format, using the specified
CCC. When the return value is XcmsFailure, the contents of the color specification array are left
unchanged.

The array may contain a mixture of color specification formats (for example, 3 CIE XYZ, 2 CIE
Luv, and so on). When the array contains both device-independent and device-dependent color
specifications and the target_format argument specifies a device-dependent format (for example,
XcmsRGBiFormat, XemsRGBFormat), all specifications are converted to CIE XYZ format
and then to the target device-dependent format.

6.10. Callback Functions
This section describes the gamut compression and white point adjustment callbacks.

The gamut compression procedure specified in the CCC is called when an attempt to convert a
color specification from XemsCIEXYZ to a device-dependent format (typically XemsRGBi)
results in a color that lies outside the screen’s color gamut. If the gamut compression procedure
requires client data, this data is passed via the gamut compression client data in the CCC.

During color specification conversion between device-independent and device-dependent color
spaces, if a white point adjustment procedure is specified in the CCC, it is triggered when the
Client White Point and Screen White Point differ. If required, the client data is obtained from the
CCC.

106

6.10.1. Prototype Gamut Compression Procedure

The gamut compression callback interface must adhere to the following:

typedef Status (* XecmsCompressionProc)(ccc, colors_in_out, ncolors, index, compression_flags_return)
XcecmsCCC ccc;
XcmsColor colors_in_out[];
unsigned int ncolors;
unsigned int index;
Bool compression_flags_return|J;

cce Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number of XemsColor structures in the color-specification array.

index Specifies the index into the array of XemsColor structures for the encountered
color specification that lies outside the screen’s color gamut. Valid values are 0
(for the first element) to ncolors — 1.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at a given index is compressed, then True
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

When implementing a gamut compression procedure, consider the following rules and assump-
tions:

. The gamut compression procedure can attempt to compress one or multiple specifications
at a time.
. When called, elements O to index — 1 in the color specification array can be assumed to fall

within the screen’s color gamut. In addition, these color specifications are already in some
device-dependent format (typically XemsRGBi). If any modifications are made to these
color specifications, they must be in their initial device-dependent format upon return.

. When called, the element in the color specification array specified by the index argument
contains the color specification outside the screen’s color gamut encountered by the calling
routine. In addition, this color specification can be assumed to be in XemsCIEXYZ.
Upon return, this color specification must be in XemsCIEXYZ.

. When called, elements from index to ncolors — 1 in the color specification array may or
may not fall within the screen’s color gamut. In addition, these color specifications can be
assumed to be in XemsCIEXYZ. If any modifications are made to these color specifica-
tions, they must be in XemsCIEXYZ upon return.

. The color specifications passed to the gamut compression procedure have already been
adjusted to the Screen White Point. This means that at this point the color specification’s
white point is the Screen White Point.

. If the gamut compression procedure uses a device-independent color space not initially
accessible for use in the color management system, use XcmsAddColorSpace to ensure
that it is added.

107

6.10.2. Supplied Gamut Compression Procedures

The following equations are useful in describing gamut compression functions:

CIELab Psychometric Chroma = sqrt(a_star® + b_star”)

CIELab Psychometric Hue = tan™ {
a_star

b_star }

CIELuv Psychometric Chroma = sqrt(u_star2 + v_starz)

v_star
CIELuv Psychometric Hue = tan™! [_7}

u_star

The gamut compression callback procedures provided by Xlib are as follows:
. XcemsCIELabClipL

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b* color space until the
color is within the gamut. If the Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*a*b* coordinates of maximum Psycho-
metric Chroma. See XemsCIELabQueryMaxC. No client data is necessary.

. XcmsCIELabClipab

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gamut. No client data is necessary.

. XcmsCIELabClipLab

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with CIE L*a*b* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

. XcmsCIELuvClipL

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v* color space until the
color is within the gamut. If the Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then, while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*u*v* coordinates of maximum Psycho-
metric Chroma. See XemsCIELuvQueryMaxC. No client data is necessary.

. XcmsCIELuvClipuv

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gamut. No client data is necessary.

. XcmsCIELuvClipLuyv

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with CIE L*u*v* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

108

. XcemsTekHVCClipV

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing the Value dimension in the TekHVC color space until the color is
within the gamut. If Chroma of the color specification is beyond maximum for the particu-
lar Hue, then, while maintaining the same Hue, the color will be clipped to the Value and
Chroma coordinates that represent maximum Chroma for that particular Hue. No client
data is necessary.

. XcemsTekHVCClipC

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing the Chroma dimension in the TekHVC color space until the color is within the
gamut. No client data is necessary.

. XcemsTekHVCClipvVC

This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with TekHVC coordinates that fall within the color gamut while maintaining
the original Hue and whose vector to the original coordinates is the shortest attainable. No
client data is necessary.

6.10.3. Prototype White Point Adjustment Procedure

The white point adjustment procedure interface must adhere to the following:

typedef Status (* XcmsWhiteAdjustProc)(ccc, initial_white_point, target_white_point, target_format,
colors_in_out, ncolors, compression_flags_return)
XcemsCCC ccc;,
XcmsColor *initial_white_point;
XcmsColor *target_white_point;
XcmsColorFormat target_format;
XcmsColor colors_in_out/];
unsigned int ncolors;
Bool compression_flags_return(];

ccc Specifies the CCC.
initial_white_point

Specifies the initial white point.
target_white_point

Specifies the target white point.

target_format Specifies the target color specification format.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number of XcemsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at a given index is compressed, then True
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

109

6.10.4. Supplied White Point Adjustment Procedures
White point adjustment procedures provided by Xlib are as follows:
. XcmsCIELabWhiteShiftColors

This uses the CIE L*a*b* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XemsCIELab using the source
white point and then converts to the target specification format using the destination’s white
point. No client data is necessary.

. XcmsCIELuvWhiteShiftColors

This uses the CIE L*u*v* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XemsCIELuv using the source
white point and then converts to the target specification format using the destination’s white
point. No client data is necessary.

. XcemsTekHVCWhiteShiftColors

This uses the TekHVC color space for adjusting the chromatic character of colors to com-
pensate for the chromatic differences between the source and destination white points. This
procedure simply converts the color specifications to XemsTekHVC using the source
white point and then converts to the target specification format using the destination’s white
point. An advantage of this procedure over those previously described is an attempt to min-
imize hue shift. No client data is necessary.

From an implementation point of view, these white point adjustment procedures convert the color
specifications to a device-independent but white-point-dependent color space (for example, CIE
L*u*v*, CIE L*a*b*, TekHVC) using one white point and then converting those specifications to
the target color space using another white point. In other words, the specification goes in the
color space with one white point but comes out with another white point, resulting in a chromatic
shift based on the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIE u’v’Y, CIE XYZ,
and CIE xyY. When developing a custom white point adjustment procedure that uses a device-
independent color space not initially accessible for use in the color management system, use
XcmsAddColorSpace to ensure that it is added.

As an example, if the CCC specifies a white point adjustment procedure and if the Client White
Point and Screen White Point differ, the XemsAllocColor function will use the white point
adjustment procedure twice:

. Once to convert to XemsRGB
. A second time to convert from XemsRGB

For example, assume the specification is in XemsCIEuvY and the adjustment procedure is Xcm-
sCIELuvWhiteShiftColors. During conversion to XemsRGB, the call to XemsAllocColor
results in the following series of color specification conversions:

. From XemsCIEuvY to XemsCIELuv using the Client White Point
. From XemsCIELuv to XemsCIEuvY using the Screen White Point

. From XemsCIEuvY to XemsCIEXYZ (CIE u’v’Y and XYZ are white-point-independent
color spaces)

. From XemsCIEXYZ to XemsRGBi

110

. From XcmsRGBi to XemsRGB

The resulting RGB specification is passed to XAllocColor, and the RGB specification returned
by XAllocColor is converted back to XemsCIEuvY by reversing the color conversion sequence.

6.11. Gamut Querying Functions

This section describes the gamut querying functions that Xlib provides. These functions allow
the client to query the boundary of the screen’s color gamut in terms of the CIE L*a*b*, CIE
L*u*v*, and TekHVC color spaces. Functions are also provided that allow you to query the color
specification of:

. White (full-intensity red, green, and blue)

. Red (full-intensity red while green and blue are zero)

. Green (full-intensity green while red and blue are zero)
. Blue (full-intensity blue while red and green are zero)
. Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from these gamut
querying functions is assumed to be the Screen White Point. This is a reasonable assumption,
because the client is trying to query the screen’s color gamut.

The following naming convention is used for the Max and Min functions:

Xcms<color_space>QueryMax<dimensions>

Xcms<color_space>QueryMin<dimensions>

The <dimensions> consists of a letter or letters that identify the dimensions of the color space that
are not fixed. For example, XemsTekHVCQueryMaxC is given a fixed Hue and Value for
which maximum Chroma is found.

6.11.1. Red, Green, and Blue Queries

To obtain the color specification for black (zero-intensity red, green, and blue), use XcmsQuery-
Black.

Status XcmsQueryBlack(ccc, target_format, color_return)
XcemsCCC ccc;,
XcmsColorFormat target_format;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.
target_format Specifies the target color specification format.

color_return ~ Returns the color specification in the specified target format for zero-intensity
red, green, and blue. The white point associated with the returned color specifi-
cation is the Screen White Point. The value returned in the pixel member is
undefined.

The XemsQueryBlack function returns the color specification in the specified target format for
zero-intensity red, green, and blue.

111

To obtain the color specification for blue (full-intensity blue while red and green are zero), use
XcmsQueryBlue.

Status XcmsQueryBlue(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
blue while red and green are zero. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target format for
full-intensity blue while red and green are zero.

To obtain the color specification for green (full-intensity green while red and blue are zero), use
XcmsQueryGreen.

Status XcmsQueryGreen(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.
target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
green while red and blue are zero. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XemsQueryGreen function returns the color specification in the specified target format for
full-intensity green while red and blue are zero.

To obtain the color specification for red (full-intensity red while green and blue are zero), use
XcmsQueryRed.

112

Status XcmsQueryRed(ccc, target_format, color_return)
XcemsCCC ccc;,
XcmsColorFormat target_format;
XcmsColor *color_return;;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.
target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity red
while green and blue are zero. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel member
is undefined.

The XemsQueryRed function returns the color specification in the specified target format for
full-intensity red while green and blue are zero.

To obtain the color specification for white (full-intensity red, green, and blue), use XcmsQuery-
White.

Status XcmsQueryWhite (ccc, target_format, color_return)
XcecmsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.
target_format Specifies the target color specification format.

color_return ~ Returns the color specification in the specified target format for full-intensity red,
green, and blue. The white point associated with the returned color specification
is the Screen White Point. The value returned in the pixel member is undefined.

The XecmsQueryWhite function returns the color specification in the specified target format for
full-intensity red, green, and blue.

6.11.2. CIELab Queries

The following equations are useful in describing the CIELab query functions:

CIELab Psychometric Chroma = sqrt(a_star2 + b_starz)

b_st
CIELab Psychometric Hue = tan™ { = a’l
a_star

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle and CIE metric lightness (L*), use XemsCIELabQueryMaxC.

113

Status XcmsCIELabQueryMaxC (ccc, hue_angle, L_star, color_return)
XcemsCCC ccc;,
XcmsFloat hue_angle;
XcmsFloat L_star;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELabQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, use XemsCIELabQueryMaxL.

Status XcmsCIELabQueryMaxL (ccc, hue_angle, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.

chroma Specifies the chroma at which to find maximum lightness.

color_return ~ Returns the CIE L*a*b* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELabQueryMaxL function, given a hue angle and chroma, finds the point in CIE
L*a*b* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*a*b* coordinates. An XcmsFailure return value usually indicates that the given chroma
is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle, use XemsCIELabQueryMaxLC.

114

Status XcmsCIELabQueryMaxLC (ccc, hue_angle, color_return)
XcemsCCC ccc;,
XcmsFloat hue_angle;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XemsCIELabQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, use XemsCIELabQueryMinL.

Status XcmsCIELabQueryMinL (ccc, hue_angle, chroma, color_return)
XcecmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return ~ Returns the CIE L*a*b* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELabQueryMinL function, given a hue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*a*b* coordinates.
An XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

6.11.3. CIELuv Queries

The following equations are useful in describing the CIELuv query functions:

CIELuv Psychometric Chroma = sqrt(u_star* + v_star?)

v_star
CIELuv Psychometric Hue = tan™ [— }

u_star

115

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle and CIE metric lightness (L*), use XemsCIELuvQueryMaxC.

Status XcmsCIELuvQueryMaxC (ccc, hue_angle, L_star, color_return)
XcmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat L_star;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELuvQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L.*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, use XemsCIELuvQueryMaxL..

Status XcmsCIELuvQueryMaxL (ccc, hue_angle, chroma, color_return)
XemsCCC ccc;,
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.

L_star Specifies the lightness (L*) at which to find maximum lightness.

color_return ~ Returns the CIE L*u*v* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELuvQueryMaxL function, given a hue angle and chroma, finds the point in CIE
L*u*v* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*u*v* coordinates. An XcmsFailure return value usually indicates that the given chroma
is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle, use XemsCIELuvQueryMaxLC.

116

Status XcmsCIELuvQueryMaxLC(ccc, hue_angle, color_return)
XcemsCCC ccc;,
XcmsFloat hue_angle;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XemsCIELuvQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, use XemsCIELuvQueryMinL.

Status XemsCIELuvQueryMinL (ccc, hue_angle, chroma, color_return)
XcecmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return ~ Returns the CIE L*u*v* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XemsCIELuvQueryMinL function, given a hue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*u*v* coordinates.
An XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

6.11.4. TekHVC Queries

To obtain the maximum Chroma for a given Hue and Value, use XcmsTekHVCQueryMaxC.

117

Status XecmsTekHVCQueryMaxC (ccc, hue, value, color_return)
XcemsCCC ccc;,
XcmsFloat hue;
XcmsFloat value;
XcmsColor *color_return;

cce

hue
value

color_return

Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

Specifies the Hue in which to find the maximum Chroma.

Specifies the Value in which to find the maximum Chroma.

Returns the maximum Chroma along with the actual Hue and Value at which the
maximum Chroma was found. The white point associated with the returned

color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XemsTekHVCQueryMaxC function, given a Hue and Value, determines the maximum
Chroma in TekHVC color space displayable by the screen. It returns the maximum Chroma
along with the actual Hue and Value at which the maximum Chroma was found.

To obtain the maximum Value for a given Hue and Chroma, use XcmsTekHVCQueryMaxV.

Status XcmsTekHVCQueryMaxV (ccc, hue, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue;
XcmsFloat chroma;
XcmsColor *color_return;

cce

hue
chroma

color_return

Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

Specifies the Hue in which to find the maximum Value.
Specifies the chroma at which to find maximum Value.

Returns the maximum Value along with the Hue and Chroma at which the maxi-
mum Value was found. The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is
undefined.

The XemsTekHVCQueryMaxV function, given a Hue and Chroma, determines the maximum
Value in TekHVC color space displayable by the screen. It returns the maximum Value and the
actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified Hue, use Xcm-
sTekHVCQueryMaxVC.

118

Status XecmsTekHVCQueryMaxVC(ccc, hue, color_return)
XcemsCCC ccc;,
XcmsFloat hue;
XcmsColor *color_return;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the maximum Chroma.

color_return ~ Returns the color specification in XcmsTekHVC for the maximum Chroma, the
Value at which that maximum Chroma is reached, and the actual Hue at which
the maximum Chroma was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XemsTekHVCQueryMaxVC function, given a Hue, determines the maximum Chroma in
TekHVC color space displayable by the screen and the Value at which that maximum Chroma is
reached. It returns the maximum Chroma, the Value at which that maximum Chroma is reached,
and the actual Hue for which the maximum Chroma was found.

To obtain a specified number of TekHVC specifications such that they contain maximum Values
for a specified Hue and the Chroma at which the maximum Values are reached, use Xcm-
sTekHVCQueryMaxVSamples.

Status XcmsTekHVCQueryMaxVSamples(ccc, hue, colors_return, nsamples)
XcmsCCC ccc;
XcmsFloat hue;
XcmsColor colors_returnf]
unsigned int nsamples;

cce Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value samples.

nsamples Specifies the number of samples.

colors_return Returns nsamples of color specifications in XcmsTekHVC such that the Chroma
is the maximum attainable for the Value and Hue. The white point associated
with the returned color specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XemsTekHVCQueryMaxVSamples returns nsamples of maximum Value, the Chroma at
which that maximum Value is reached, and the actual Hue for which the maximum Chroma was
found. These sample points may then be used to plot the maximum Value/Chroma boundary of
the screen’s color gamut for the specified Hue in TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use XcmsTekHVCQueryMinV.

119

Status XcmsTekHVCQueryMinV (ccc, hue, chroma, color_return)
XcemsCCC ccc;,
XcmsFloat hue;
XcmsFloat chroma;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the minimum Value.

value Specifies the Value in which to find the minimum Value.

color_return ~ Returns the minimum Value and the actual Hue and Chroma at which the mini-
mum Value was found. The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is
undefined.

The XemsTekHVCQueryMinV function, given a Hue and Chroma, determines the minimum
Value in TekHVC color space displayable by the screen. It returns the minimum Value and the
actual Hue and Chroma at which the minimum Value was found.

6.12. Color Management Extensions
The Xlib color management facilities can be extended in two ways:
. Device-Independent Color Spaces

Device-independent color spaces that are derivable to CIE XYZ space can be added using
the XcmsAddColorSpace function.

J Color Characterization Function Set

A Color Characterization Function Set consists of device-dependent color spaces and their
functions that convert between these color spaces and the CIE XYZ color space, bundled
together for a specific class of output devices. A function set can be added using the Xcm-
sAddFunctionSet function.

6.12.1. Color Spaces

The CIE XYZ color space serves as the hub for all conversions between device-independent and
device-dependent color spaces. Therefore, the knowledge to convert an XemsColor structure to
and from CIE XYZ format is associated with each color space. For example, conversion from
CIE L*u*v* to RGB requires the knowledge to convert from CIE L*u*v* to CIE XYZ and from
CIE XYZ to RGB. This knowledge is stored as an array of functions that, when applied in series,
will convert the XemsColor structure to or from CIE XYZ format. This color specification con-
version mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only device-depen-
dent color spaces, shortcuts are taken whenever possible. For example, conversion from TekHVC
to CIE L*u*v* is performed by intermediate conversion to CIE u*v*Y and then to CIE L*u*v*,
thus bypassing conversion between CIE u*v*Y and CIE XYZ.

6.12.2. Adding Device-Independent Color Spaces

To add a device-independent color space, use XcmsAddColorSpace.

120

Status XcmsAddColorSpace(color_space)
XcmsColorSpace *color_space;

color_space Specifies the device-independent color space to add.

The XemsAddColorSpace function makes a device-independent color space (actually an Xcms-
ColorSpace structure) accessible by the color management system. Because format values for
unregistered color spaces are assigned at run time, they should be treated as private to the client.
If references to an unregistered color space must be made outside the client (for example, storing
color specifications in a file using the unregistered color space), then reference should be made by
color space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

If the XcmsColorSpace structure is already accessible in the color management system, Xcm-
sAddColorSpace returns XcmsSuccess.

Note that added XcmsColorSpaces must be retained for reference by Xlib.

6.12.3. Querying Color Space Format and Prefix

To obtain the format associated with the color space associated with a specified color string pre-
fix, use XcmsFormatOfPrefix.

XcmsColorFormat XcmsFormatOfPrefix (prefix)
char *prefix;

prefix Specifies the string that contains the color space prefix.

The XemsFormatOfPrefix function returns the format for the specified color space prefix (for
example, the string “CIEXYZ”). The prefix is case-insensitive. If the color space is not accessi-
ble in the color management system, XcmsFormatOfPrefix returns XemsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color format, use
XcmsPrefixOfFormat.

char *XcmsPrefixOfFormat (format)
XcmsColorFormat format;

format Specifies the color specification format.

The XcemsPrefixOfFormat function returns the string prefix associated with the color specifica-
tion encoding specified by the format argument. Otherwise, if no encoding is found, it returns
NULL. The returned string must be treated as read-only.

6.12.4. Creating Additional Color Spaces

Color space specific information necessary for color space conversion and color string parsing is
stored in an XcmsColorSpace structure. Therefore, a new structure containing this information
is required for each additional color space. In the case of device-independent color spaces, a han-
dle to this new structure (that is, by means of a global variable) is usually made accessible to the
client program for use with the XecmsAddColorSpace function.

If a new XcemsColorSpace structure specifies a color space not registered with the X Consor-
tium, they should be treated as private to the client because format values for unregistered color

121

spaces are assigned at run time. If references to an unregistered color space must be made outside
the client (for example, storing color specifications in a file using the unregistered color space),
then reference should be made by color space prefix (see XcmsFormatOfPrefix and XcmsPre-
fixOfFormat).

typedef (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;
/* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
char *prefix;
XcmsColorFormat format;
XcmsParseStringProc parseString;
XcmsFuncListPtr to_ CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;
int inverse_flag;

} XemsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this color space’s string
format. For example, the strings “ciexyz” or “CIEXYZ” for CIE XYZ, and “rgb”” or “RGB”
for RGB. The prefix is case insensitive. The format member specifies the color specification for-
mat. Formats for unregistered color spaces are assigned at run time. The parseString member
contains a pointer to the function that can parse a color string into an XemsColor structure. This
function returns an integer (int): nonzero if it succeeded and zero otherwise. The to_CIEXYZ
and from_CIEXYZ members contain pointers, each to a NULL terminated list of function point-
ers. When the list of functions is executed in series, it will convert the color specified in an Xcm-
sColor structure from/to the current color space format to/from the CIE XYZ format. Each func-
tion returns an integer (int): nonzero if it succeeded and zero otherwise. The white point to be
associated with the colors is specified explicitly, even though white points can be found in the
CCC. The inverse_flag member, if nonzero, specifies that for each function listed in to_CIEXYZ,
its inverse function can be found in from_CIEXYZ such that:

Given: n = number of functions in each list

foreach 1, suchthat 0 <=i<n
from_CIEXYZ[n -1 - 1] is the inverse of to_ CIEXYZ[i].

This allows Xlib to use the shortest conversion path, thus bypassing CIE XYZ if possible (for
example, TekHVC to CIE L*u*v¥).

6.12.5. Parse String Callback

The callback in the XemsColorSpace structure for parsing a color string for the particular color
space must adhere to the following software interface specification:

122

typedef int (*XcmsParseStringProc) (color_string, color_return)
char *color_string;
XcmsColor *color_return;

color_string Specifies the color string to parse.

color_return Returns the color specification in the color space’s format.

6.12.6. Color Specification Conversion Callback

Callback functions in the XemsColorSpace structure for converting a color specification
between device-independent spaces must adhere to the following software interface specification:

Status ConversionProc(ccc, white_point, colors_in_out, ncolors)
XcmsCCC ccc;
XcmsColor *white_point;
XcmsColor *colors_in_out;
unsigned int ncolors;

ccc Specifies the CCC.

white_point Specifies the white point associated with color specifications. The pixel member
should be ignored, and the entire structure remain unchanged upon return.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number of XemsColor structures in the color-specification array.

Callback functions in the XemsColorSpace structure for converting a color specification to or
from a device-dependent space must adhere to the following software interface specification:

Status ConversionProc(ccc, colors_in_out, ncolors, compression_flags_return)
XcecmsCCC ccc;
XcmsColor *colors_in_out;
unsigned int ncolors;
Bool compression_flags_return|[];

cce Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number of XemsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at a given index is compressed, then True
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

Conversion functions are available globally for use by other color spaces. The conversion func-
tions provided by Xlib are:

123

Function Converts from Converts to
XcmsCIELabToCIEXYZ XcmsCIELabFormat XcmsCIEXYZFormat
XcmsCIELuvToCIEuvY XcmsCIELuvFormat XcmsCIEuvYFormat
XcmsCIEXYZToCIELab XcmsCIEXYZFormat XcmsCIELabFormat
XcmsCIEXYZToCIEuvY XcmsCIEXYZFormat XcmsCIEuvYFormat
XcemsCIEXYZToCIExyY XemsCIEXYZFormat XcmsCIExyYFormat
XcmsCIEXYZToRGBi XcmsCIEXYZFormat XcmsRGBiFormat
XcemsCIEuvYToCIELuv XcmsCIEuvYFormat XcmsCIELabFormat
XemsCIEuvYToCIEXYZ XcmsCIEuvYFormat XcemsCIEXYZFormat
XcmsCIEuvYToTekHVC XcmsCIEuvYFormat XcmsTekHVCFormat
XcemsCIExyYToCIEXYZ XcemsCIExyYFormat XcemsCIEXYZFormat
XcmsRGBToRGBI XcmsRGBFormat XcmsRGBiFormat
XcmsRGBiToCIEXYZ XcmsRGBiFormat XcmsCIEXYZFormat
XcmsRGBiToRGB XcmsRGBiFormat XcmsRGBFormat
XemsTekHVCToCIEuvY XcmsTekHV CFormat XcmsCIEuvYFormat

6.12.7. Function Sets

Functions to convert between device-dependent color spaces and CIE XYZ may differ for differ-
ent classes of output devices (for example, color versus gray monitors). Therefore, the notion of a
Color Characterization Function Set has been developed. A function set consists of device-
dependent color spaces and the functions that convert color specifications between these device-
dependent color spaces and the CIE XYZ color space appropriate for a particular class of output
devices. The function set also contains a function that reads color characterization data off root
window properties. It is this characterization data that will differ between devices within a class
of output devices. For details about how color characterization data is stored in root window
properties, see the section on Device Color Characterization in the Inter-Client Communication
Conventions Manual. The LINEAR_RGB function set is provided by Xlib and will support most
color monitors. Function sets may require data that differs from those needed for the LIN-
EAR_RGB function set. In that case, its corresponding data may be stored on different root win-
dow properties.

6.12.8. Adding Function Sets

To add a function set, use XemsAddFunctionSet.

Status XcmsAddFunctionSet (function_set)
XcmsFunctionSet *function_set;

function_set Specifies the function set to add.

The XcmsAddFunctionSet function adds a function set to the color management system. If the
function set uses device-dependent XemsColorSpace structures not accessible in the color man-
agement system, XcmsAddFunctionSet adds them. If an added XcmsColorSpace structure is
for a device-dependent color space not registered with the X Consortium, they should be treated
as private to the client because format values for unregistered color spaces are assigned at run
time. If references to an unregistered color space must be made outside the client (for example,
storing color specifications in a file using the unregistered color space), then reference should be
made by color space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

124

Additional function sets should be added before any calls to other Xlib routines are made. If not,
the XcmsPerScrnInfo member of a previously created XemsCCC does not have the opportunity
to initialize with the added function set.

6.12.9. Creating Additional Function Sets

The creation of additional function sets should be required only when an output device does not
conform to existing function sets or when additional device-dependent color spaces are necessary.
A function set consists primarily of a collection of device-dependent XcmsColorSpace struc-
tures and a means to read and store a screen’s color characterization data. This data is stored in
an XcmsFunctionSet structure. A handle to this structure (that is, by means of global variable)
is usually made accessible to the client program for use with XcmsAddFunctionSet.

If a function set uses new device-dependent XcmsColorSpace structures, they will be transpar-
ently processed into the color management system. Function sets can share an XcmsColorSpace
structure for a device-dependent color space. In addition, multiple XcmsColorSpace structures
are allowed for a device-dependent color space; however, a function set can reference only one of
them. These XcmsColorSpace structures will differ in the functions to convert to and from CIE
XYZ, thus tailored for the specific function set.

typedef struct _XcmsFunctionSet {
XcmsColorSpace **DDColorSpaces;
XcmsScreenlnitProc screenlnitProc;
XcmsScreenFreeProc screenFreeProc;
} XcmsFunctionSet;

The DDColorSpaces member is a pointer to a NULL terminated list of pointers to XcmsCol-
orSpace structures for the device-dependent color spaces that are supported by the function set.
The screenlnitProc member is set to the callback procedure (see the following interface specifica-
tion) that initializes the XcmsPerScrnInfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface specification:

typedef Status (*XcmsScreenlnitProc) (display, screen_number, screen_info)
Display *display;
int screen_number;
XcmsPerScrnlnfo *screen_info;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

screen_info Specifies the XemsPerScrnInfo structure, which contains the per screen infor-
mation.

The screen initialization callback in the XcmsFunctionSet structure fetches the color characteri-
zation data (device profile) for the specified screen, typically off properties on the screen’s root
window. It then initializes the specified XcmsPerScrnInfo structure. If successful, the proce-
dure fills in the XcmsPerScrnInfo structure as follows:

. It sets the screenData member to the address of the created device profile data structure
(contents known only by the function set).

125

. It next sets the screenWhitePoint member.
. It next sets the functionSet member to the address of the XemsFunctionSet structure.
. It then sets the state member to XcmsInitSuccess and finally returns XcmsSuccess.

If unsuccessful, the procedure sets the state member to XcmsInitFailure and returns XcmsFail-
ure.

The XcmsPerScrnInfo structure contains:

typedef struct _XcmsPerScrnlnfo {
XcmsColor screenWhitePoint;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} XcmsPerScrnlnfo;

The screenWhitePoint member specifies the white point inherent to the screen. The functionSet
member specifies the appropriate function set. The screenData member specifies the device pro-
file. The state member is set to one of the following:

. XcmslInitNone indicates initialization has not been previously attempted.
. XcmslInitFailure indicates initialization has been previously attempted but failed.
. XcmsInitSuccess indicates initialization has been previously attempted and succeeded.

The screen free callback must adhere to the following software interface specification:

typedef void (*XcmsScreenFreeProc) (screenData)
XPointer screenData;,

screenData Specifies the data to be freed.

This function is called to free the screenData stored in an XcmsPerScrnInfo structure.

126

Chapter 7

Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most information
about performing graphics (for example, foreground color, background color, line style, and so
on) is stored in resources called graphics contexts (GCs). Most graphics operations (see chapter
8) take a GC as an argument. Although in theory the X protocol permits sharing of GCs between
applications, it is expected that applications will use their own GCs when performing operations.
Sharing of GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which collectively are
called drawables. Each drawable exists on a single screen. A GC is created for a specific screen
and drawable depth and can only be used with drawables of matching screen and depth.

This chapter discusses how to:
. Manipulate graphics context/state

. Use graphics context convenience functions

7.1. Manipulating Graphics Context/State

Most attributes of graphics operations are stored in GCs. These include line width, line style,
plane mask, foreground, background, tile, stipple, clipping region, end style, join style, and so on.
Graphics operations (for example, drawing lines) use these values to determine the actual drawing
operation. Extensions to X may add additional components to GCs. The contents of a GC are
private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to allow
Xlib to implement the transparent coalescing of changes to GCs. For example, a call to XSet-
Foreground of a GC followed by a call to XSetLineAttributes results in only a single-change
GC protocol request to the server. GCs are neither expected nor encouraged to be shared between
client applications, so this write-back caching should present no problems. Applications cannot
share GCs without external synchronization. Therefore, sharing GCs between applications is
highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure and OR in
the corresponding value bitmask in your subsequent calls to XCreateGC. The symbols for the
value mask bits and the XGCValues structure are:

127

/* GC attribute value mask bits */

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GClLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)
#define GCFillStyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)

/* Values */

typedef struct {

int function;

unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;

/* logical operation */

/* plane mask */

/* foreground pixel */

/* background pixel */

/* line width (in pixels) */

/* LineSolid, LineOnOffDash, LineDoubleDash */

/* CapNotLast, CapButt, CapRound, CapProjecting */
/* JoinMiter, JoinRound, JoinBevel */

/* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/
/* EvenOddRule, WindingRule */

/* ArcChord, ArcPieSlice */

/* tile pixmap for tiling operations */

/* stipple 1 plane pixmap for stippling */

/* offset for tile or stipple operations */

int line_style;

int cap_style;

int join_style;

int fill_style;

int fill_rule;

int arc_mode;

Pixmap tile;

Pixmap stipple;

int ts_x_origin;

int ts_y_origin;

Font font;

int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;

int clip_y_origin;
Pixmap clip_mask;
int dash_offset;

/* default text font for text operations */

/* ClipByChildren, Includelnferiors */

/* boolean, should exposures be generated */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/dashed line information */

128

char dashes;
} XGCValues;

The default GC values are:

Component Default

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill_style FillSolid

fill_rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones

ts_x_origin 0

ts_y_origin 0

font <implementation dependent>

subwindow_mode ClipByChildren

graphics_exposures True

clip_x_origin 0

clip_y_origin 0

clip_mask None

dash_offset 0

dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a window.

The function attributes of a GC are used when you update a section of a drawable (the destina-
tion) with bits from somewhere else (the source). The function in a GC defines how the new des-
tination bits are to be computed from the source bits and the old destination bits. GXcopy is typ-
ically the most useful because it will work on a color display, but special applications may use
other functions, particularly in concert with particular planes of a color display. The 16 GC func-
tions, defined in <X11/X.h>, are:

Function Name

Value Operation

GXclear
GXand

GXandReverse

GXcopy

0x0 0

0x1 src AND dst

0x2 src AND NOT dst
0x3 src

129

Function Name Value Operation

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse 0xb src OR (NOT dst)
GXcopylnverted Oxc NOT src

GXorlInverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attribute is
of type long, and it specifies which planes of the destination are to be modified, one bit per plane.
A monochrome display has only one plane and will be the least significant bit of the word. As
planes are added to the display hardware, they will occupy more significant bits in the plane
mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise on cor-
responding bits of the pixels. That is, a Boolean operation is performed in each bit plane. The
plane_mask restricts the operation to a subset of planes. A macro constant AllPlanes can be used
to refer to all planes of the screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane_mask. They
are simply truncated to the appropriate number of bits. The line-width is measured in pixels and
either can be greater than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join-style or cap-style, the bounding box of a wide line with endpoints [x1, y1],
[x2, y2] and width w is a rectangle with vertices at the following real coordinates:

[x1-(w*sn/2), yl+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(Ww*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A pixel is
part of the line and so is drawn if the center of the pixel is fully inside the bounding box (which is
viewed as having infinitely thin edges). If the center of the pixel is exactly on the bounding box,
it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately below (y increasing direction) and the interior or the
boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-depen-
dent algorithm. There are only two constraints on this algorithm.

1. If aline is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn unclipped
from [x1+dx,yl+dy] to [x2+dx,y2+dy], a point [X,y] is touched by drawing the first line if
and only if the point [x+dx,y+dy] is touched by drawing the second line.

130

2. The effective set of points comprising a line cannot be affected by clipping. That is, a point
is touched in a clipped line if and only if the point lies inside the clipping region and the
point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended that this prop-
erty be true for thin lines, but this is not required. A line-width of zero may differ from a line-
width of one in which pixels are drawn. This permits the use of many manufacturers’ line draw-
ing hardware, which may run many times faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. However,
because of their different drawing algorithms, thin lines may not mix well aesthetically with wide
lines. If it is desirable to obtain precise and uniform results across all displays, a client should
always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:
LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled differ-
ently from the odd dashes (see fill-style) with CapButt style used where
even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends
of the individual dashes, except CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width, cen-
tered on the endpoint. (This is equivalent to CapButt for line-width of
Zero).

CapProjecting The line is square at the end, but the path continues beyond the endpoint

for a distance equal to half the line-width. (This is equivalent to Cap-
Butt for line-width of zero).

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, then a JoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both end-
points, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the desired effect is that
nothing is drawn.

131

CapButt thin The results are device dependent, but the desired effect is that a
single pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for CapButt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and with the
diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-
width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was removed from the overall path. However, if the total path
consists of or is reduced to a single point joined with itself, the effect is the same as when the cap-
style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple replicated in all
dimensions. When that plane is superimposed on the drawable for use in a graphics operation,
the upper-left corner of some instance of the tile/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The tile pixmap must
have the same root and depth as the GC, or a BadMatch error results. The stipple pixmap must
have depth one and must have the same root as the GC, or a BadMatch error results. For stipple
operations where the fill-style is FillStippled but not FillOpaqueStippled, the stipple pattern is
tiled in a single plane and acts as an additional clip mask to be ANDed with the clip-mask.
Although some sizes may be faster to use than others, any size pixmap can be used for tiling or
stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all text and fill
requests (for example, XDrawText, XDrawText16, XFillRectangle, XFillPolygon, and XFil-
IArc); for line requests with line-style LineSolid (for example, XDrawLine, XDrawSegments,
XDrawRectangle, XDrawArc); and for the even dashes for line requests with line-style
LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground
FillTiled Tile
FillOpaqueStippled A tile with the same width and height as stipple, but with back-

ground everywhere stipple has a zero and with foreground every-
where stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by the fill-
style in the following manner:

FillSolid Background
FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes

132

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is later
used as the destination for a graphics request, the change might or might not be reflected in the
GC. If the pixmap is used simultaneously in a graphics request both as a destination and as a tile
or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC (without
changing its components). The costs of changing GC components relative to using different GCs
depend on the display hardware and the server implementation. It is quite likely that some
amount of GC information will be cached in display hardware and that such hardware can only
cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with
XSetDashes. Specifying a value of N is equivalent to specifying the two-element list [N, N] in
XSetDashes. The value must be nonzero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a pixmap, it
must have depth one and have the same root as the GC, or a BadMatch error results. If clip-
mask is set to None, the pixels are always drawn regardless of the clip origin. The clip-mask also
can be set by calling the XSetClipRectangles or XSetRegion functions. Only pixels where the
clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-
mask or where the clip-mask has a bit set to 0. The clip-mask affects all graphics requests. The
clip-mask does not clip sources. The clip-mask origin is interpreted relative to the origin of what-
ever destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For ClipByChil-
dren, both source and destination windows are additionally clipped by all viewable InputOut-
put children. For Includelnferiors, neither source nor destination window is clipped by inferi-
ors. This will result in including subwindow contents in the source and drawing through subwin-
dow boundaries of the destination. The use of IncludeInferiors on a window of one depth with
mapped inferiors of differing depth is not illegal, but the semantics are undefined by the core pro-
tocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon requests and
can be set to EvenOddRule or WindingRule. For EvenOddRule, a point is inside if an infinite
ray with the point as origin crosses the path an odd number of times. For WindingRule, a point
is inside if an infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed path segments. A clockwise directed path segment is one that crosses
the ray from left to right as observed from the point. A counterclockwise segment is one that
crosses the ray from right to left as observed from the point. The case where a directed line seg-
ment is coincident with the ray is uninteresting because you can simply choose a different ray that
is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside if the center point of the pixel is inside and the center point is
not on the boundary. If the center point is on the boundary, the pixel is inside if and only if the
polygon interior is immediately to its right (x increasing direction). Pixels with centers on a hori-
zontal edge are a special case and are inside if and only if the polygon interior is immediately
below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or Arc-
Chord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea and
XCopyPlane requests (and any similar requests defined by extensions).

133

To create a new GC that is usable on a given screen with a depth of drawable, use XCreateGC.

GC XCreateGC(display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long valuemask;
XGCValues *values;

display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be set using the information in the

specified values structure. This argument is the bitwise inclusive OR of zero or
more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be used with
any destination drawable having the same root and depth as the specified drawable. Use with
other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap, and
BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC (display, src, valuemask, dest)
Display *display;
GC src, dest;
unsigned long valuemask;

display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be copied to the destination GC.

This argument is the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the destination
GC. The source and destination GCs must have the same root and depth, or a BadMatch error
results. The valuemask specifies which component to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

134

XChangeGC (display, gc, valuemask, values)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values;

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be changed using information in the

specified values structure. This argument is the bitwise inclusive OR of zero or
more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the specified GC.
The values argument contains the values to be set. The values and restrictions are the same as for
XCreateGC. Changing the clip-mask overrides any previous XSetClipRectangles request on
the context. Changing the dash-offset or dash-list overrides any previous XSetDashes request on
the context. The order in which components are verified and altered is server dependent. If an
error is generated, a subset of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and Bad-
Value errors.

To obtain components of a given GC, use XGetGCValues.

Status XGetGCValues (display, gc, valuemask, values_return)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values_return;

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be returned in the values_return

argument. This argument is the bitwise inclusive OR of zero or more of the valid
GC component mask bits.

values_return Returns the GC values in the specified XGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the specified
GC. If the valuemask contains a valid set of GC mask bits (GCFunction, GCPlaneMask,
GCForeground, GCBackground, GCLineWidth, GCLineStyle, GCCapStyle, GCJoin-
Style, GCFillStyle, GCFillRule, GCTile, GCStipple, GCTileStipXOrigin, GCTileStipYO-
rigin, GCFont, GCSubwindowMode, GCGraphicsExposures, GCClipXOrigin, GCCLipY-
Origin, GCDashOffset, or GCArcMode) and no error occurs, XGetGCValues sets the
requested components in values_return and returns a nonzero status. Otherwise, it returns a zero
status. Note that the clip-mask and dash-list (represented by the GCClipMask and GCDashList
bits, respectively, in the valuemask) cannot be requested. Also note that an invalid resource ID
(with one or more of the three most significant bits set to 1) will be returned for GCFont,
GCTile, and GCStipple if the component has never been explicitly set by the client.

135

To free a given GC, use XFreeGC.

XFreeGC (display, gc)

Display *display;

GC gc;
display Specifies the connection to the X server.
gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.
XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC (gc)
GC gc;

gc Specifies the GC for which you want the resource ID.

Xlib usually defers sending changes to the components of a GC to the server until a graphics
function is actually called with that GC. This permits batching of component changes into a sin-
gle server request. In some circumstances, however, it may be necessary for the client to explic-
itly force sending the changes to the server. An example might be when a protocol extension uses
the GC indirectly, in such a way that the extension interface cannot know what GC will be used.
To force sending GC component changes, use XFlushGC.

void XFlushGC (display, gc)

Display *display;

GC gc;
display Specifies the connection to the X server.
gc Specifies the GC.

7.2. Using Graphics Context Convenience Routines

This section discusses how to set the:

. Foreground, background, plane mask, or function components

. Line attributes and dashes components

. Fill style and fill rule components

. Fill tile and stipple components

. Font component

. Clip region component

. Arc mode, subwindow mode, and graphics exposure components

136

7.2.1. Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given GC, use
XSetState.

XSetState (display, gc, foreground, background, function, plane_mask)
Display *display;
GC gc;
unsigned long foreground, background;
int function;
unsigned long plane_mask;
display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.

plane_mask Specifies the plane mask.
XSetState can generate BadAlloc, BadGC, and BadValue errors.
To set the foreground of a given GC, use XSetForeground.

XSetForeground (display, gc, foreground)

Display *display;

GC gc;

unsigned long foreground;
display Specifies the connection to the X server.
gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.
XSetForeground can generate BadAlloc and BadGC errors.
To set the background of a given GC, use XSetBackground.

XSetBackground (display, gc, background)

Display *display;

GC gc;

unsigned long background;;
display Specifies the connection to the X server.
gc Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

137

To set the display function in a given GC, use XSetFunction.

XSetFunction (display, gc, function)
Display *display;

GC gc;
int function;
display Specifies the connection to the X server.
gc Specifies the GC.
function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.
To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask (display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;

display Specifies the connection to the X server.
gc Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

7.2.2. Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

138

XSetLineAttributes (display, gc, line_width, line_style, cap_style, join_style)
Display *display;
GC gc;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

display Specifies the connection to the X server.

gc Specifies the GC.

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the specified GC. You

can pass CapNotLast, CapButt, CapRound, or CapProjecting.

Jjoin_style Specifies the line join-style you want to set for the specified GC. You can pass
JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.
To set the dash-offset and dash-list for dashed line styles of a given GC, use XSetDashes.

XSetDashes (display, gc, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset;
char dash_list[];

intn;

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you want to set for the
specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set for the specified
GC.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line styles in the
specified GC. There must be at least one element in the specified dash_list, or a BadValue error
results. The initial and alternating elements (second, fourth, and so on) of the dash_list are the
even dashes, and the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero, or a BadValue error results. Specifying an odd-length list
is equivalent to specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-list the
pattern should actually begin in any single graphics request. Dashing is continuous through path
elements combined with a join-style but is reset to the dash-offset between each sequence of
joined lines.

139

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between —45 and +45 degrees or between 135 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

7.2.3. Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display, gc, fill_style)
Display *display;
GC gc;
int fill_style;

display Specifies the connection to the X server.
gc Specifies the GC.
Sill_style Specifies the fill-style you want to set for the specified GC. You can pass Fill-

Solid, FillTiled, FillStippled, or FillOpaqueStippled.
XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.
To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule)
Display *display;
GC gc;
int fill_rule;

display Specifies the connection to the X server.
gc Specifies the GC.
Sfill_rule Specifies the fill-rule you want to set for the specified GC. You can pass Even-

OddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

7.2.4. Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific sizes. Tiling
and stippling operations that restrict themselves to those specific sizes run much faster than such
operations with arbitrary size patterns. Xlib provides functions that you can use to determine the
best size, tile, or stipple for the display as well as to set the tile or stipple shape and the tile or
stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

140

Status XQueryBestSize (display, class, which_screen, width, height, width_return, height_return)
Display *display;
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can pass TileShape, Cursor-
Shape, or StippleShape.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestSize function returns the best or closest size to the specified size. For Cursor-
Shape, this is the largest size that can be fully displayed on the screen specified by which_screen.
For TileShape, this is the size that can be tiled fastest. For StippleShape, this is the size that
can be stippled fastest. For CursorShape, the drawable indicates the desired screen. For Tile-
Shape and StippleShape, the drawable indicates the screen and possibly the window class and
depth. An InputOnly window cannot be used as the drawable for TileShape or StippleShape,
or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.
To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height, width_return, height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified by which_screen. The drawable indicates the screen and possibly
the window class and depth. If an InputOnly window is used as the drawable, a BadMatch
error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

141

Status XQueryBestStipple (display, which_screen, width, height, width_return, height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that can be stip-
pled fastest on the screen specified by which_screen. The drawable indicates the screen and pos-
sibly the window class and depth. If an InputOnly window is used as the drawable, a Bad-
Match error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSetTile.

XSetTile(display, gc, tile)
Display *display;
GC gc;
Pixmap tile;

display Specifies the connection to the X server.
gc Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple(display, gc, stipple)
Display *display;

GC gc;
Pixmap stipple;
display Specifies the connection to the X server.
gc Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.

142

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display, gc, ts_x_origin, ts_y_origin)
Display *display;
GC gc;
int ts_x_origin, ts_y_origin;

display Specifies the connection to the X server.
gc Specifies the GC.
ts_x_origin

ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted relative
to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC errors.

7.2.5. Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSetFont(display, gc, font)
Display *display;

GC gc;

Font font;
display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

7.2.6. Setting the Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the clip-
mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

143

XSetClipOrigin (display, gc, clip_x_origin, clip_y_origin)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable is spec-
ified in the graphics request.
XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask (display, gc, pixmap)
Display *display;

GC gc;

Pixmap pixmap;
display Specifies the connection to the X server.
gc Specifies the GC.
pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are always drawn (regardless of the clip-origin).
XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRectangles.

144

XSetClipRectangles (display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
XRectangle rectangles|];
int n;
int ordering;
display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.
n Specifies the number of rectangles.
ordering Specifies the ordering relations on the rectangles. You can pass Unsorted,

YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the specified list
of rectangles and sets the clip origin. The output is clipped to remain contained within the rectan-
gles. The clip-origin is interpreted relative to the origin of whatever destination drawable is spec-
ified in a graphics request. The rectangle coordinates are interpreted relative to the clip-origin.
The rectangles should be nonintersecting, or the graphics results will be undefined. Note that the
list of rectangles can be empty, which effectively disables output. This is the opposite of passing
None as the clip-mask in XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is specified,
the X server may generate a BadMatch error, but it is not required to do so. If no error is gener-
ated, the graphics results are undefined. Unsorted means the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted additionally
constrains YSorted order in that all rectangles with an equal Y origin are nondecreasing in their
X origin. YXBanded additionally constrains YXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic. For information about
these functions, see section 16.5.

7.2.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure
To set the arc mode of a given GC, use XSetArcMode.

145

XSetArcMode (display, gc, arc_mode)
Display *display;
GC gc;

int arc_mode;

display Specifies the connection to the X server.
gc Specifies the GC.
arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.
To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode (display, gc, subwindow_mode)
Display *display;
GC gc;
int subwindow_mode;

display Specifies the connection to the X server.
gc Specifies the GC.

subwindow_mode
Specifies the subwindow mode. You can pass ClipByChildren or IncludeInfe-
riors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.
To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExposures(display, gc, graphics_exposures)
Display *display;
GC gc;
Bool graphics_exposures;

display Specifies the connection to the X server.

gc Specifies the GC.

graphics_exposures
Specifies a Boolean value that indicates whether you want GraphicsExpose and
NoExpose events to be reported when calling XCopyArea and XCopyPlane
with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

146

Chapter 8

Graphics Functions

Once you have established a connection to a display, you can use the Xlib graphics functions to:

. Clear and copy areas

. Draw points, lines, rectangles, and arcs

. Fill areas

. Manipulate fonts

. Draw text

. Transfer images between clients and the server

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to XDraw-
Point, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that this reduces
the total number of requests sent to the server.

8.1. Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because pixmaps
do not have defined backgrounds, they cannot be filled by using the functions described in this
section. Instead, to accomplish an analogous operation on a pixmap, you should use XFillRect-
angle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures)
Display *display;
Window w;
intx,y;
unsigned int width, height;
Bool exposures;

display Specifies the connection to the X server.

w Specifies the window.

X

y Specify the x and y coordinates, which are relative to the origin of the window
and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to be generated.

The XClearArea function paints a rectangular area in the specified window according to the
specified dimensions with the window’s background pixel or pixmap. The subwindow-mode
effectively is ClipByChildren. If width is zero, it is replaced with the current width of the win-
dow minus x. If height is zero, it is replaced with the current height of the window minus y. If

147

the window has a defined background tile, the rectangle clipped by any children is filled with this
tile. If the window has background None, the contents of the window are not changed. In either
case, if exposures is True, one or more Expose events are generated for regions of the rectangle
that are either visible or are being retained in a backing store. If you specify a window whose
class is InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.
To clear the entire area in a given window, use XClearWindow .

XClearWindow (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is equivalent to
XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined background tile, the rect-
angle is tiled with a plane-mask of all ones and GXcopy function. If the window has background
None, the contents of the window are not changed. If you specify a window whose class is
InputOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

8.2. Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

148

XCopyArea(display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;

display Specifies the connection to the X server.

sre

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_Xx

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of the destination

rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rectangle of
dest. The drawables must have the same root and depth, or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, those regions are not copied.
Instead, the following occurs on all corresponding destination regions that are either visible or are
retained in backing store. If the destination is a window with a background other than None, cor-
responding regions of the destination are tiled with that background (with plane-mask of all ones
and GXcopy function). Regardless of tiling or whether the destination is a window or a pixmap,
if graphics-exposures is True, then GraphicsExpose events for all corresponding destination
regions are generated. If graphics-exposures is True but no GraphicsExpose events are gener-
ated, a NoExpose event is generated. Note that by default graphics-exposures is True in new
GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, and clip-mask.
XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

149

XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;
unsigned long plane;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest x

dest_y Specify the x and y coordinates, which are relative to the origin of the destination
rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined
with the specified GC to modify the specified rectangle of dest. The drawables must have the
same root but need not have the same depth. If the drawables do not have the same root, a Bad-
Match error results. If plane does not have exactly one bit set to 1 and the value of plane is not
less than 2", where n is the depth of src, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with a
size specified by the source region. It uses the foreground/background pixels in the GC (fore-
ground everywhere the bit plane in src contains a bit set to 1, background everywhere the bit
plane in src contains a bit set to 0) and the equivalent of a CopyArea protocol request is per-
formed with all the same exposure semantics. This can also be thought of as using the specified
region of the source bit plane as a stipple with a fill-style of FillOpaqueStippled for filling a
rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background, subwin-
dow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.3. Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

. A single point or multiple points
. A single line or multiple lines
. A single rectangle or multiple rectangles

150

. A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short x1, y1, x2, y2;
} XSegment;

typedef struct {
short x, y;
} XPoint;

typedef struct {

short x, y;

unsigned short width, height;
} XRectangle;

typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; /* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit unsigned
integers. You should be careful not to generate coordinates and sizes out of the 16-bit ranges,
because the protocol only has 16-bit fields for these values.

8.3.1. Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

151

XDrawPoint(display, d, gc, x, y)
Display *display;

Drawable d;
GC gc;
intx,y;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;

int mode
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-

ModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the GC to draw
a single point into the specified drawable; XDrawPoints draws multiple points this way. Coord-
ModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point. XDrawPoints draws the points in the
order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors. XDrawPoints can
generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.3.2. Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

152

XDrawLine(display, d, gc, x1, yl, x2,y2)
Display *display;

Drawable d;
GC gc;
intx/,yl,x2,y2;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x1
vl
x2
y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;

int mode;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-

ModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

153

XDrawSegments(display, d, gc, segments, nsegments)
Display *display;
Drawable d;
GC gc;
XSegment *segments;
int nsegments;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line between the
specified set of points (x1, y1) and (x2, y2). It does not perform joining at coincident endpoints.
For any given line, XDrawLine does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints—1 lines
between each pair of points (point[i], point[i+1]) in the array of XPoint structures. It draws the
lines in the order listed in the array. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly. For any given line,
XDrawLines does not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious
treats all coordinates after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the order
listed in the array of XSegment structures and does not perform joining at coincident endpoints.
For any given line, XDrawSegments does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. The XDrawLines
function also uses the join-style GC component. All three functions also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-
origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGC, and
BadMatch errors. XDrawLines also can generate BadValue errors.

8.3.3. Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

154

XDrawRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
intx,y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which specify the upper-left corner of the rectan-
gle.

width

height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDrawRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle rectangles|];
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the specified rect-
angle or rectangles as if a five-point PolyLine protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than once.
XDrawRectangles draws the rectangles in the order listed in the array. If rectangles intersect,
the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC, and Bad-
Match errors.

155

8.3.4. Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArec.

XDrawArc(display, d, gc, x, y, width, height, anglel , angle2)
Display *display;
Drawable d;
GC gc;
intx,y;
unsigned int width, height;
int anglel , angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the center,
in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units of

degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, gc, arcs, narcs)
Display *display;

Drawable d;
GC gc;
XArc *arcs;
int narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArces draws multiple circular or
elliptical arcs. Each arc is specified by a rectangle and two angles. The center of the circle or
ellipse is the center of the rectangle, and the major and minor axes are specified by the width and
height. Positive angles indicate counterclockwise motion, and negative angles indicate clockwise

156

motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or XDrawArcs
truncates it to 360 degrees.

For an arc specified as [x, y, width, height, anglel, angle2], the origin of the major and minor

idth height
axes is at[x + le , v+ ezig], and the infinitely thin path describing the entire circle or

height height
s] and [x + width, y + s

ellipse intersects the horizontal axis at[x, y +] and intersects

width width
, y] and [x +

the vertical axis at [x + , ¥+ height]. These coordinates can be frac-

tional and so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width 1w, the bounding outlines for filling are given
by the two infinitely thin paths consisting of all points whose perpendicular distance from the
path of the circle/ellipse is equal to Iw/2 (which may be a fractional value). The cap-style and
join-style are applied the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

For an arc specified as [x, y, width, height, anglel, angle?], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate sys-
tems are identical). The relationship between these angles and angles expressed in the normal
coordinate system of the screen (as measured with a protractor) is as follows:

idth
skewed-angle = atan(tan(normal—angle) * :l t]+ adjust
e

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64)
in the range [0, 27] and where atan returns a value in the range [— g , g] and adjust is:

0 for normal-angle in the range [0, g]

3
b4 for normal-angle in the range [f , g]
2 for normal-angle in the range [7” , 27]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If two arcs
join correctly and if the line-width is greater than zero and the arcs intersect, XDrawArc and
XDrawArecs do not draw a pixel more than once. Otherwise, the intersecting pixels of intersect-
ing arcs are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an equivalent counterclockwise extent,
except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs will join
correctly. If the first point in the first arc coincides with the last point in the last arc, the two arcs
will join correctly. By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawAres can generate BadDrawable, BadGC, and BadMatch errors.

157

8.4. Filling Areas

Xlib provides functions that you can use to fill:
. A single rectangle or multiple rectangles
. A single polygon

. A single arc or multiple arcs

8.4.1. Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
intx,y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the rectangle to be

filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectangles as if
a four-point FillPolygon protocol request were specified for each rectangle:

158

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given rectangle,
XFillRectangle and XFillRectangles do not draw a pixel more than once. If rectangles inter-
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC, and BadMatch
errors.

8.4.2. Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;

int shape;
int mode
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
shape Specifies a shape that helps the server to improve performance. You can pass
Complex, Convex, or Nonconvex.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-

ModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point. XFillPolygon does not draw a pixel of

the region more than once. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

. If shape is Complex, the path may self-intersect. Note that contiguous coincident points in
the path are not treated as self-intersection.

. If shape is Convex, for every pair of points inside the polygon, the line segment connecting
them does not intersect the path. If known by the client, specifying Convex can improve
performance. If you specify Convex for a path that is not convex, the graphics results are
undefined.

159

. If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly convex.
If known by the client, specifying Nonconvex instead of Complex may improve perfor-
mance. If you specify Nonconvex for a self-intersecting path, the graphics results are
undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent compo-
nents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.4.3. Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

XFillArc(display, d, gc, x,y, width, height, anglel , angle2)
Display *display;
Drawable d;
GC gc;
intx,y;
unsigned int width, height;
int anglel , angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the center,
in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units of

degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

160

XFillArcs(display, d, gc, arcs, narcs)
Display *display;

Drawable d;
GC gc;
XArc *arcs;
int narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path described
by the specified arc and, depending on the arc-mode specified in the GC, one or two line seg-
ments. For ArcChord, the single line segment joining the endpoints of the arc is used. For
ArcPieSlice, the two line segments joining the endpoints of the arc with the center point are
used. XFillAres fills the arcs in the order listed in the array. For any given arc, XFillArc and
XFillArcs do not draw a pixel more than once. If regions intersect, the intersecting pixels are
drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch errors.

8.5. Font Metrics

A font is a graphical description of a set of characters that are used to increase efficiency when-
ever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

. Load and free fonts

. Obtain and free font names

. Compute character string sizes
. Compute logical extents

. Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can cache fonts for
quick lookup. Fonts are global across all screens in a server. Several levels are possible when
dealing with fonts. Most applications simply use XLoadQueryFont to load a font and query the
font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pixels modi-
fied are those in which bits are set to 1 in the character. This means that it makes sense to draw
text using stipples or tiles (for example, many menus gray-out unusable entries).

161

The XFontStruct structure contains all of the information for the font and consists of the font-

specific information as well as a pointer to an array of XCharStruct structures for the characters

contained in the font. The XFontStruct, XFontProp, and XCharStruct structures contain:

typedef struct {

short Ibearing;

short rbearing;

short width;

short ascent;

short descent;

unsigned short attributes;
} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;
} XFontProp;

typedef struct {
unsigned char bytel;
unsigned char byte2;
} XChar2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_bytel;
unsigned max_bytel;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;

/* origin to left edge of raster */

/* origin to right edge of raster */

/* advance to next char’s origin */

/* baseline to top edge of raster */

/* baseline to bottom edge of raster */
/* per char flags (not predefined) */

/* normal 16 bit characters are two bytes */

/* hook for extension to hang data */

/* Font id for this font */

/* hint about the direction font is painted */
/* first character */

/* last character */

/* first row that exists */

/* last row that exists */

/* flag if all characters have nonzero size */
/* char to print for undefined character */

/* how many properties there are */

/* pointer to array of additional properties */
/* minimum bounds over all existing char */
/* maximum bounds over all existing char */
/* first_char to last_char information */

/* logical extent above baseline for spacing */

int descent;
} XFontStruct;

/* logical descent below baseline for spacing */

X supports single byte/character, two bytes/character matrix, and 16-bit character text operations.
Note that any of these forms can be used with a font, but a single byte/character text request can
only specify a single byte (that is, the first row of a 2-byte font). You should view 2-byte fonts as
a two-dimensional matrix of defined characters: bytel specifies the range of defined rows and
byte2 defines the range of defined columns of the font. Single byte/character fonts have one row
defined, and the byte2 range specified in the structure defines a range of characters.

162

The bounding box of a character is defined by the XCharStruct of that character. When charac-
ters are absent from a font, the default_char is used. When fonts have all characters of the same
size, only the information in the XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

The direction member can be either FontLeftToRight or FontRightToLeft. It is just a
hint as to whether most XCharStruct elements have a positive (FontLeftToRight) or a
negative (FontRightToLeft) character width metric. The core protocol defines no support
for vertical text.

If the min_bytel and max_bytel members are both zero, min_char_or_byte2 specifies the
linear character index corresponding to the first element of the per_char array, and
max_char_or_byte2 specifies the linear character index of the last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values corresponding
to the per_char array element N (counting from 0) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 — min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

If the per_char pointer is NULL, all glyphs between the first and last character indexes
inclusive have the same information, as given by both min_bounds and max_bounds.

If all_chars_exist is True, all characters in the per_char array have nonzero bounding
boxes.

The default_char member specifies the character that will be used when an undefined or
nonexistent character is printed. The default_char is a 16-bit character (not a 2-byte charac-
ter). For a font using 2-byte matrix format, the default_char has bytel in the most-signifi-
cant byte and byte2 in the least significant byte. If the default_char itself specifies an unde-
fined or nonexistent character, no printing is performed for an undefined or nonexistent
character.

The min_bounds and max_bounds members contain the most extreme values of each indi-
vidual XCharStruct component over all elements of this array (and ignore nonexistent
characters). The bounding box of the font (the smallest rectangle enclosing the shape
obtained by superimposing all of the characters at the same origin [x,y]) has its upper-left
coordinate at:

[x + min_bounds.lbearing, y — max_bounds.ascent]

Its width is:

max_bounds.rbearing — min_bounds.lbearing

Its height is:

max_bounds.ascent + max_bounds.descent

The ascent member is the logical extent of the font above the baseline that is used for deter-
mining line spacing. Specific characters may extend beyond this.

163

. The descent member is the logical extent of the font at or below the baseline that is used for
determining line spacing. Specific characters may extend beyond this.

. If the baseline is at Y-coordinate y, the logical extent of the font is inclusive between the
Y-coordinate values (y — font.ascent) and (y + font.descent — 1). Typically, the minimum
interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle that
encloses the character’s shape) described in terms of XCharStruct components is a rectangle
with its upper-left corner at:

[x + Ibearing, y — ascent]
Its width is:
rbearing — Ibearing
Its height is:
ascent + descent
The origin for the next character is defined to be:
[x + width, y]

The Ibearing member defines the extent of the left edge of the character ink from the origin. The
rbearing member defines the extent of the right edge of the character ink from the origin. The
ascent member defines the extent of the top edge of the character ink from the origin. The
descent member defines the extent of the bottom edge of the character ink from the origin. The
width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as being the
scanline just below nondescending characters. When descent is zero, only pixels with Y-coordi-
nates less than y are drawn, and the origin is logically viewed as being coincident with the left
edge of a nonkerned character. When lbearing is zero, no pixels with X-coordinate less than x are
drawn. Any of the XCharStruct metric members could be negative. If the width is negative, the
next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in the XCharStruct
structure. A nonexistent character is represented with all members of its XCharStruct set to
zZero.

A font is not guaranteed to have any properties. The interpretation of the property value (for
example, long or unsigned long) must be derived from a priori knowledge of the property. A
basic set of font properties is specified in the X Consortium standard X Logical Font Description
Conventions.

8.5.1. Loading and Freeing Fonts
Xlib provides functions that you can use to load fonts, get font information, unload fonts, and free
font information. A few font functions use a GContext resource ID or a font ID interchangeably.

To load a given font, use XLoadFont.

164

Font XLoadFont(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. If the font
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter. When the characters “?”” and “*” are used in a
font name, a pattern match is performed and any matching font is used. In the pattern, the “?”
character will match any single character, and the “*” character will match any number of char-
acters. A structured format for font names is specified in the X Consortium standard X Logical
Font Description Conventions. If XLoadFont was unsuccessful at loading the specified font, a
BadName error results. Fonts are not associated with a particular screen and can be stored as a
component of any GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, font _ID)
Display *display;

XID font_ID:;
display Specifies the connection to the X server.
font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which contains infor-
mation associated with the font. You can query a font or the font stored in a GC. The font ID
stored in the XFontStruct structure will be the GContext ID, and you need to be careful when
using this ID in other functions (see XGContextFromGC). If the font does not exist, XQuery-
Font returns NULL. To free this data, use XFreeFontInfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoadQueryFont.

XFontStruct *XLoadQueryFont(display, name)
Display *display;

char *name;
display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font. XLoad-
QueryFont both opens (loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. If the font name is not in the Host Portable Character Encoding, the
result is implementation-dependent. If the font does not exist, XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

165

To unload the font and free the storage used by the font structure that was allocated by XQuery-
Font or XLoadQueryFont, use XFreeFont.

XFreeFont(display, font_struct)
Display *display;
XFontStruct *font_struct;
display Specifies the connection to the X server.

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees the XFontStruct structure. The font itself will be freed when no other resource
references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.
To return a given font property, use XGetFontProperty.

Bool XGetFontProperty (font_struct, atom, value_return)
XFontStruct *font_struct;
Atom atom;
unsigned long *value_return;

font_struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want returned.

value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of the speci-
fied font property. XGetFontProperty also returns False if the property was not defined or
True if it was defined. A set of predefined atoms exists for font properties, which can be found
in <X11/Xatom.h>. This set contains the standard properties associated with a font. Although it
is not guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(display, font)
Display *display;

Font font;
display Specifies the connection to the X server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the speci-
fied font. The font itself will be freed when no other resource references it. The font should not
be referenced again.

XUnloadFont can generate a BadFont error.

166

8.5.2. Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when querying a
font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;
int maxnames;,
int *actual_count_return;

display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain wildcard characters.
maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the font
search path; see XSetFontPath) that match the string you passed to the pattern argument. The
pattern string can contain any characters, but each asterisk (*) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. If the pattern string is
not in the Host Portable Character Encoding, the result is implementation-dependent. Use of
uppercase or lowercase does not matter. Each returned string is null-terminated. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. If
there are no matching font names, XListFonts returns NULL. The client should call XFree-
FontNames when finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames (/ist)
char *[ist[];

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts or XList-
FontsWithInfo.

To obtain the names and information about available fonts, use XListFontsWithInfo.

167

char **XListFontsWithInfo (display, pattern, maxnames, count_return, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct **info_return;

display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain wildcard characters.
maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithInfo function returns a list of font names that match the specified pattern
and their associated font information. The list of names is limited to size specified by maxnames.
The information returned for each font is identical to what XLoadQueryFont would return
except that the per-character metrics are not returned. The pattern string can contain any charac-
ters, but each asterisk (*) is a wildcard for any number of characters, and each question mark (?)
is a wildcard for a single character. If the pattern string is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase does not mat-
ter. Each returned string is null-terminated. If the data returned by the server is in the Latin
Portable Character Encoding, then the returned strings are in the Host Portable Character Encod-
ing. Otherwise, the result is implementation-dependent. If there are no matching font names,
XListFontsWithInfo returns NULL.

To free only the allocated name array, the client should call XFreeFontNames. To free both the
name array and the font information array or to free just the font information array, the client
should call XFreeFontInfo.

To free font structures and font names, use XFreeFontInfo.

XFreeFontInfo(names, free_info, actual_count)
char **names;
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names.
free_info Specifies the font information.

actual_count Specifies the actual number of font names.

The XFreeFontInfo function frees a font structure or an array of font structures and optionally
an array of font names. If NULL is passed for names, no font names are freed. If a font structure
for an open font (returned by XLoadQueryFont) is passed, the structure is freed, but the font is
not closed; use XUnloadFont to close the font.

168

8.5.3. Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the server
information about 8-bit and 2-byte text strings. The width is computed by adding the character
widths of all the characters. It does not matter if the font is an 8-bit or 2-byte font. These func-
tions return the sum of the character metrics in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth (font_struct, string, count)
XFontStruct *font_struct;
char *string;

int count;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16 (font_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;

int count;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

8.5.4. Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTextExtents.

169

XTextExtents (font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
XFontStruct *font_struct;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use XTextExtents16.

XTextExtents16(font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
XFontStruct *font_struct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return

Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).
font_ascent_return

Returns the font ascent.

font_descent_return
Returns the font descent.
overall_return Returns the overall size in the specified XCharStruct structure.

The XTextExtents and XTextExtents16 functions perform the size computation locally and,

170

thereby, avoid the round-trip overhead of XQueryTextExtents and XQueryTextExtents16.
Both functions return an XCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.

The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string. For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing met-
ric of the character plus W. The Ibearing member is set to the minimum L of all characters in the
string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

8.5.5. Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use XQuery-
TextExtents.

XQueryTextExtents(display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
Display *display;
XID font_ID:;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains the font.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtents16.

171

XQueryTextExtents16 (display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
Display *display;
XID font_ID;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains the font.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding box of the
specified 8-bit and 16-bit character string in the specified font or the font contained in the speci-
fied GC. These functions query the X server and, therefore, suffer the round-trip overhead that is
avoided by XTextExtents and XTextExtents16. Both functions return a XCharStruct struc-
ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.

The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string. For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing met-
ric of the character plus W. The Ibearing member is set to the minimum L of all characters in the
string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char, the unde-
fined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generate BadFont and BadGC errors.

8.6. Drawing Text
This section discusses how to draw:
. Complex text

. Text characters

172

. Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following structures:

typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don’t change */

} XTextltem;

typedef struct {

XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* font to print it in, None don’t change */

} XTextltem16;

If the font member is not None, the font is changed before printing and also is stored in the GC.
If an error was generated during text drawing, the previous items may have been drawn. The
baseline of the characters are drawn starting at the x and y coordinates that you pass in the text
drawing functions.

For example, consider the background rectangle drawn by XDrawlmageString. If you want the
upper-left corner of the background rectangle to be at pixel coordinate (X,y), pass the (x,y +
ascent) as the baseline origin coordinates to the text functions. The ascent is the font ascent, as
given in the XFontStruct structure. If you want the lower-left corner of the background rectan-
gle to be at pixel coordinate (X,y), pass the (x,y — descent + 1) as the baseline origin coordinates
to the text functions. The descent is the font descent, as given in the XFontStruct structure.

8.6.1. Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

173

XDrawText(display, d, gc, x, y, items, nitems)
Display *display;

Drawable d;
GC gc;
intx,y;
XTextltem *items;
int nitems;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawTextl16(display, d, gc, x, y, items, nitems)
Display *display;

Drawable d;
GC gc;
intx,y;
XTextltem16 *items;
int nitems;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit charac-
ters. Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than None in an item causes the font to
be stored in the GC and used for subsequent text. A text element delta specifies an additional
change in the position along the x axis before the string is drawn. The delta is always added to
the character origin and is not dependent on any characteristics of the font. Each character image,
as defined by the font in the GC, is treated as an additional mask for a fill operation on the draw-
able. The drawable is modified only where the font character has a bit set to 1. If a text item gen-
erates a BadFont error, the previous text items may have been drawn.

174

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC, and Bad-
Match errors.

8.6.2. Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length)
Display *display;

Drawable d;
GC gc;
intx,y;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.

175

XDrawStringl6(display, d, gc, x, y, string, length)
Display *display;

Drawable d;
GC gc;
intx,y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask for a fill
operation on the drawable. The drawable is modified only where the font character has a bit set to
1. For fonts defined with 2-byte matrix indexing and used with XDrawString16, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawStringl6 can generate BadDrawable, BadGC, and BadMatch
errors.

8.6.3. Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which both the
foreground and background bits of each character are painted. This prevents annoying flicker on
many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImageString.

176

XDrawlmageString (display, d, gc, x, y, string, length)

Display *display;

Drawable d;
GC gc;
intx,y;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawIlmageString16.

XDrawlmageString16(display, d, gc, x, v, string, length)

Display *display;

Drawable d;
GC gc;
intx,y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

The XDrawlmageString16 function is similar to XDrawImageString except that it uses 2-byte
or 16-bit characters. Both functions also use both the foreground and background pixels of the
GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC and
then to paint the text with the foreground pixel. The upper-left corner of the filled rectangle is at:

[x, y — font-ascent]

The width is:

177

overall-width
The height is:
font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by XQueryTextEx-
tents using gc and string. The function and fill-style defined in the GC are ignored for these
functions. The effective function is GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background, font, subwin-
dow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageString16 can generate BadDrawable, BadGC, and
BadMatch errors.

8.7. Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that fully
describes the data in memory and that provides for basic operations on that data. You should ref-
erence the data through the image object rather than referencing the data directly. However, some
implementations of the Xlib library may efficiently deal with frequently used data formats by
replacing functions in the procedure vector with special case functions. Supported operations
include destroying the image, getting a pixel, storing a pixel, extracting a subimage of an image,
and adding a constant to an image (see section 16.8).

All the image manipulation functions discussed in this section make use of the XImage structure,
which describes an image as it exists in the client’s memory.

178

typedef struct _XImage {

int width, height; /* size of image */

int xoffset; /* number of pixels offset in X direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */
char *data; /* pointer to image data */

int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 */

int bitmap_bit_order; /* LSBFirst, MSBFirst */

int bitmap_pad; /* 8, 16, 32 either XY or ZPixmap */

int depth; /* depth of image */

int bytes_per_line; /* accelerator to next scanline */

int bits_per_pixel; /* bits per pixel (ZPixmap) */

unsigned long red_mask; /* bits in z arrangement */

unsigned long green_mask;
unsigned long blue_mask;
XPointer obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */
struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();
|
} XImage;

To initialize the image manipulation routines of an image structure, use XInitImage.

Status XInitlmage (image)
Xlmage *image;

ximage Specifies the image.

The XInitImage function initializes the internal image manipulation routines of an image struc-
ture, based on the values of the various structure members. All fields other than the manipulation
routines must already be initialized. If the bytes_per_line member is zero, XInitImage will
assume the image data is contiguous in memory and set the bytes_per_line member to an appro-
priate value based on the other members; otherwise, the value of bytes_per_line is not changed.
All of the manipulation routines are initialized to functions that other Xlib image manipulation
functions need to operate on the type of image specified by the rest of the structure.

This function must be called for any image constructed by the client before passing it to any other
Xlib function. Image structures created or returned by Xlib do not need to be initialized in this
fashion.

This function returns a nonzero status if initialization of the structure is successful. It returns zero
if it detected some error or inconsistency in the structure, in which case the image is not changed.

To combine an image with a rectangle of a drawable on the display, use XPutImage.

179

XPutlmage (display, d, gc, image, src_x, src_y, dest_x, dest_y, width, height)
Display *display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y;
int dest_x, dest_y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

Src_x Specifies the offset in X from the left edge of the image defined by the XImage
structure.

src_y Specifies the offset in Y from the top edge of the image defined by the XImage
structure.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of the drawable
and are the coordinates of the subimage.

width

height Specify the width and height of the subimage, which define the dimensions of the

rectangle.

The XPutImage function combines an image with a rectangle of the specified drawable. The
section of the image defined by the src_x, src_y, width, and height arguments is drawn on the
specified part of the drawable. If XYBitmap format is used, the depth of the image must be one,
or a BadMatch error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zero bits. For XYPixmap and
ZPixmap, the depth of the image must match the depth of the drawable, or a BadMatch error
results.

If the characteristics of the image (for example, byte_order and bitmap_unit) differ from what the
server requires, XPutImage automatically makes the appropriate conversions.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, and clip-mask. It also uses these GC mode-dependent components: foreground and
background.

XPutImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGetImage. This
function specifically supports rudimentary screen dumps.

180

XImage *XGetlmage (display, d, x, y, width, height, plane_mask, format)
Display *display;
Drawable d;
intx,y;
unsigned int width, height;
unsigned long plane_mask;

int format;
display Specifies the connection to the X server.
d Specifies the drawable.
X
y Specify the x and y coordinates, which are relative to the origin of the drawable
and define the upper-left corner of the rectangle.
width
height Specify the width and height of the subimage, which define the dimensions of the

rectangle.
plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This structure provides you
with the contents of the specified rectangle of the drawable in the format you specify. If the for-
mat argument is XYPixmap, the image contains only the bit planes you passed to the
plane_mask argument. If the plane_mask argument only requests a subset of the planes of the
display, the depth of the returned image will be the number of planes requested. If the format
argument is ZPixmap, XGetImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in plane_mask
and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage structure. The
depth of the image is as specified when the drawable was created, except when getting a subset of
the planes in XYPixmap format, when the depth is given by the number of bits set to 1 in
plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the drawable is a window, the window must be viewable, and it must
be the case that if there were no inferiors or overlapping windows, the specified rectangle of the
window would be fully visible on the screen and wholly contained within the outside edges of the
window, or a BadMatch error results. Note that the borders of the window can be included and
read with this request. If the window has backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows. If the window does not
have backing-store, the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified window’s depth are
also undefined. The pointer cursor image is not included in the returned contents. If a problem
occurs, XGetImage returns NULL.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image struc-
ture, use XGetSubImage.

181

XImage *XGetSublmage (display, d, x, y, width, height, plane_mask, format, dest_image, dest_x,
dest_y)
Display *display;
Drawable d;
intx,y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

display Specifies the connection to the X server.

d Specifies the drawable.

X

y Specify the x and y coordinates, which are relative to the origin of the drawable
and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions of the

rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or ZPixmap.
dest_image Specifies the destination image.

dest x

dest_y Specify the x and y coordinates, which are relative to the origin of the destination

rectangle, specify its upper-left corner, and determine where the subimage is
placed in the destination image.

The XGetSubImage function updates dest_image with the specified subimage in the same man-
ner as XGetImage. If the format argument is XYPixmap, the image contains only the bit planes
you passed to the plane_mask argument. If the format argument is ZPixmap, XGetSubImage
returns as zero the bits in all planes not specified in the plane_mask argument. The function per-
forms no range checking on the values in plane_mask and ignores extraneous bits. As a con-
venience, XGetSublmage returns a pointer to the same XImage structure specified by
dest_image.

The depth of the destination XImage structure must be the same as that of the drawable. If the
specified subimage does not fit at the specified location on the destination image, the right and
bottom edges are clipped. If the drawable is a pixmap, the given rectangle must be wholly con-
tained within the pixmap, or a BadMatch error results. If the drawable is a window, the window
must be viewable, and it must be the case that if there were no inferiors or overlapping windows,
the specified rectangle of the window would be fully visible on the screen and wholly contained
within the outside edges of the window, or a BadMatch error results. If the window has back-
ing-store, then the backing-store contents are returned for regions of the window that are obscured
by noninferior windows. If the window does not have backing-store, the returned contents of
such obscured regions are undefined. The returned contents of visible regions of inferiors of a
different depth than the specified window’s depth are also undefined. If a problem occurs, XGet-
SubImage returns NULL.

182

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

183

Chapter 9

Window and Session Manager Functions

Although it is difficult to categorize functions as exclusively for an application, a window man-
ager, or a session manager, the functions in this chapter are most often used by window managers
and session managers. It is not expected that these functions will be used by most application
programs. Xlib provides management functions to:

. Change the parent of a window

. Control the lifetime of a window

. Manage installed colormaps

. Set and retrieve the font search path
. Grab the server

. Kill a client
. Control the screen saver

. Control host access

9.1. Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use XReparentWindow.
There is no way to move a window between screens.

XReparentWindow (display, w, parent, x, y)
Display *display;
Window w;
Window parent;
intx,y;

display Specifies the connection to the X server.
w Specifies the window.

parent Specifies the parent window.

X
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an UnmapWin-
dow request on it, removes it from its current position in the hierarchy, and inserts it as the child

of the specified parent. The window is placed in the stacking order on top with respect to sibling

windows.

After reparenting the specified window, XReparentWindow causes the X server to generate a
ReparentNotify event. The override_redirect member returned in this event is set to the win-
dow’s corresponding attribute. Window manager clients usually should ignore this window if this
member is set to True. Finally, if the specified window was originally mapped, the X server
automatically performs a MapWindow request on it.

184

The X server performs normal exposure processing on formerly obscured windows. The X server
might not generate Expose events for regions from the initial UnmapWindow request that are
immediately obscured by the final MapWindow request. A BadMatch error results if:

. The new parent window is not on the same screen as the old parent window.

. The new parent window is the specified window or an inferior of the specified window.

. The new parent is InputOnly, and the window is not.

. The specified window has a ParentRelative background, and the new parent window is not

the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

9.2. Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of one of the
client’s windows at connection close, should not be destroyed and should be remapped if they are
unmapped. For further information about close-connection processing, see section 2.6. To allow
an application’s window to survive when a window manager that has reparented a window fails,
Xlib provides the save-set functions that you can use to control the longevity of subwindows that
are normally destroyed when the parent is destroyed. For example, a window manager that wants
to add decoration to a window by adding a frame might reparent an application’s window. When
the frame is destroyed, the application’s window should not be destroyed but be returned to its
previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.
To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet(display, w, change_mode)
Display *display;
Window w;
int change_mode;
display Specifies the connection to the X server.
w Specifies the window that you want to add to or delete from the client’s save-set.

change_mode Specifies the mode. You can pass SetModelnsert or SetModeDelete.

Depending on the specified mode, XChangeSaveSet cither inserts or deletes the specified win-
dow from the client’s save-set. The specified window must have been created by some other
client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client’s save-set, use XAddToSaveSet.

185

XAddToSaveSet(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The specified
window must have been created by some other client, or a BadMatch error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.
To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s save-set.
The specified window must have been created by some other client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

9.3. Managing Installed Colormaps

The X server maintains a list of installed colormaps. Windows using these colormaps are guaran-
teed to display with correct colors; windows using other colormaps may or may not display with
correct colors. Xlib provides functions that you can use to install a colormap, uninstall a col-
ormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is called
the required list. The length of the required list is at most M, where M is the minimum number of
installed colormaps specified for the screen in the connection setup. The required list is main-
tained as follows. When a colormap is specified to XInstallColormap, it is added to the head of
the list; the list is truncated at the tail, if necessary, to keep its length to at most M. When a col-
ormap is specified to XUninstallColormap and it is in the required list, it is removed from the
list. A colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XInstallColormap.

186

XlInstallColormap (display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true colors. You associated the
windows with this colormap when you created them by calling XCreateWindow, XCreateSim-
pleWindow, XChangeWindowAttributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a Col-
ormapNotify event on each window that has that colormap. In addition, for every other col-
ormap that is installed as a result of a call to XInstallColormap, the X server generates a Col-
ormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.
To uninstall a colormap, use XUninstallColormap.

XUninstallColormap (display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required list for its
screen. As a result, the specified colormap might be uninstalled, and the X server might implic-
itly install or uninstall additional colormaps. Which colormaps get installed or uninstalled is
server dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a ColormapNotify event
on each window that has that colormap. In addition, for every other colormap that is installed or
uninstalled as a result of a call to XUninstallColormap, the X server generates a ColormapNo-
tify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XListInstalledCol-
ormaps.

187

Colormap *XListInstalledColormaps (display, w, num_return)
Display *display;
Window w;
int *num_return;

display Specifies the connection to the X server.

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed colormaps for the
screen of the specified window. The order of the colormaps in the list is not significant and is no
explicit indication of the required list. When the allocated list is no longer needed, free it by
using XFree.

XListInstalledColormaps can generate a BadWindow error.

9.4. Setting and Retrieving the Font Search Path

The set of fonts available from a server depends on a font search path. Xlib provides functions to
set and retrieve the search path for a server.

To set the font search path, use XSetFontPath.
XSetFontPath (display, directories, ndirs)

Display *display;
char **directories;

int ndirs;
display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the path to the empty
list restores the default path defined for the X server.
ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is only one
search path per X server, not one per client. The encoding and interpretation of the strings are
implementation-dependent, but typically they specify directories or font servers to be searched in
the order listed. An X server is permitted to cache font information internally; for example, it
might cache an entire font from a file and not check on subsequent opens of that font to see if the
underlying font file has changed. However, when the font path is changed, the X server is guaran-
teed to flush all cached information about fonts for which there currently are no explicit resource
IDs allocated. The meaning of an error from this request is implementation-dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

188

char **XGetFontPath (display, npaths_return)
Display *display;
int *npaths_return;

display Specifies the connection to the X server.

npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the search path.
The contents of these strings are implementation-dependent and are not intended to be interpreted
by client applications. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath (list)
char **[ist;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

9.5. Grabbing the Server

Xlib provides functions that you can use to grab and ungrab the server. These functions can be
used to control processing of output on other connections by the window system server. While
the server is grabbed, no processing of requests or close downs on any other connection will
occur. A client closing its connection automatically ungrabs the server. Although grabbing the
server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer (display)
Display *display;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other connec-
tions than the one this request arrived on. You should not grab the X server any more than is
absolutely necessary.

To ungrab the server, use XUngrabServer.

189

XUngrabServer (display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other connec-
tions. You should avoid grabbing the X server as much as possible.

9.6. Killing Clients

Xlib provides a function to cause the connection to a client to be closed and its resources to be
destroyed. To destroy a client, use XKillClient.

XKillClient(display, resource)
Display *display;
XID resource;

display Specifies the connection to the X server.
resource Specifies any resource associated with the client that you want to destroy or All-
Temporary.

The XKillClient function forces a close down of the client that created the resource if a valid
resource is specified. If the client has already terminated in either RetainPermanent or Retain-
Temporary mode, all of the client’s resources are destroyed. If AllTemporary is specified, the
resources of all clients that have terminated in RetainTemporary are destroyed (see section 2.5).
This permits implementation of window manager facilities that aid debugging. A client can set
its close-down mode to RetainTemporary. If the client then crashes, its windows would not be
destroyed. The programmer can then inspect the application’s window tree and use the window
manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

9.7. Controlling the Screen Saver
Xlib provides functions that you can use to set or reset the mode of the screen saver, to force or
activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

190

XSetScreenSaver (display, timeout, interval, prefer_blanking , allow_exposures)
Display *display;
int timeout, interval;
int prefer_blanking ;
int allow_exposures;;

display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screen saver turns on.
interval Specifies the interval, in seconds, between screen saver alterations.

prefer_blanking
Specifies how to enable screen blanking. You can pass DontPreferBlanking,
PreferBlanking, or DefaultBlanking.

allow_exposures
Specifies the screen save control values. You can pass DontAllowExposures,
AllowExposures, or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver (but an
activated screen saver is not deactivated), and a timeout of —1 restores the default. Other negative
values generate a BadValue error. If the timeout value is nonzero, XSetScreenSaver enables the
screen saver. An interval of 0 disables the random-pattern motion. If no input from devices
(keyboard, mouse, and so on) is generated for the specified number of timeout seconds once the
screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sending Expose events to clients, the screen is tiled with the root window background
tile randomly re-origined each interval seconds. Otherwise, the screens’ state do not change, and
the screen saver is not activated. The screen saver is deactivated, and all screen states are restored
at the next keyboard or pointer input or at the next call to XForceScreenSaver with mode
ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argument
serves as a hint about how long the change period should be, and zero hints that no periodic
change should be made. Examples of ways to change the screen include scrambling the colormap
periodically, moving an icon image around the screen periodically, or tiling the screen with the
root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver (display, mode)
Display *display;

int mode;
display Specifies the connection to the X server.
mode Specifies the mode that is to be applied. You can pass ScreenSaverActive or

ScreenSaverReset.

If the specified mode is ScreenSaverActive and the screen saver currently is deactivated,

191

XForceScreenSaver activates the screen saver even if the screen saver had been disabled with a
timeout of zero. If the specified mode is ScreenSaverReset and the screen saver currently is
enabled, XForceScreenSaver deactivates the screen saver if it was activated, and the activation
timer is reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a BadValue error.
To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver (display)
Display *display;

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver .

XResetScreenSaver (display)
Display *display;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver (display, timeout_return, interval_return, prefer_blanking_return,
allow_exposures_return)
Display *display;
int *timeout_return, *interval_return;
int *prefer_blanking_return;
int *allow_exposures_return;

display Specifies the connection to the X server.

timeout_return Returns the timeout, in seconds, until the screen saver turns on.

interval_return
Returns the interval between screen saver invocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPreferBlanking,
PreferBlanking, or DefaultBlanking).

allow_exposures_return
Returns the current screen save control value (DontAllowExposures, AllowEx-
posures, or DefaultExposures).

9.8. Controlling Host Access
This section discusses how to:

. Add, get, or remove hosts from the access control list

192

. Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource ID of a
resource, you can manipulate it. To provide some minimal level of protection, however, connec-
tions are permitted only from machines you trust. This is adequate on single-user workstations
but obviously breaks down on timesharing machines. Although provisions exist in the X protocol
for proper connection authentication, the lack of a standard authentication server leaves host-level
access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:
. The host the window system is running on.

. On POSIX-conformant systems, each host listed in the /etc/X?.hosts file. The ? indicates
the number of the display. This file should consist of host names separated by newlines.
DEChnet nodes must terminate in :: to distinguish them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and if the
host attempts to establish a connection, the server refuses the connection. To change the access

list, the client must reside on the same host as the server and/or must have been granted permis-
sion in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this host
access facility. For further information about other access control implementations, see “X Win-
dow System Protocol.”

9.8.1. Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access control list.
All the host access control functions use the XHostAddress structure, which contains:

typedef struct {

int family; /* for example FamilyInternet */
int length; /* length of address, in bytes */
char *address; /* pointer to where to find the address */

} XHostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP or DEC-
net) and can be FamilyInternet, FamilyInternet6, FamilyServerInterpreted, FamilyDEC-
net, or FamilyChaos. The length member specifies the length of the address in bytes. The
address member specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For IP version 4 addresses, the family
should be FamilyInternet and the length should be 4 bytes. For IP version 6 addresses, the family
should be FamilyInternet6 and the length should be 16 bytes.

For the DECnet family, the server performs no automatic swapping on the address bytes. A Phase
IV address is 2 bytes long. The first byte contains the least significant 8 bits of the node number.
The second byte contains the most significant 2 bits of the node number in the least significant 2
bits of the byte and the area in the most significant 6 bits of the byte.

For the ServerInterpreted family, the length is ignored and the address member is a pointer to a
XServerInterpretedAddress structure, which contains:

193

typedef struct {

int typelength; /* length of type string, in bytes */

int valuelength;/* length of value string, in bytes */

char *type; /* pointer to where to find the type string */
char *value; /* pointer to where to find the address */

} XServerlnterpretedAddress;

The type and value members point to strings representing the type and value of the server inter-
preted entry. These strings may not be NULL-terminated so care should be used when accessing
them. The typelength and valuelength members specify the length in byte of the type and value
strings.

To add a single host, use XAddHost.

XAddHost(display, host)

Display *display;

XHostAddress *host;
display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.
To add multiple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

display Specifies the connection to the X server.
hosts Specifies each host that is to be added.
num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.
XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

194

XHostAddress *XListHosts (display, nhosts_return, state_return)
Display *display;
int *nhosts_return;
Bool *state_return;

display Specifies the connection to the X server.

nhosts_return Returns the number of hosts currently in the access control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use of the
list at connection setup was enabled or disabled. XListHosts allows a program to find out what
machines can make connections. It also returns a pointer to a list of host structures that were allo-
cated by the function. When no longer needed, this memory should be freed by calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for that dis-
play. The server must be on the same host as the client process, or a BadAccess error results. If
you remove your machine from the access list, you can no longer connect to that server, and this
operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.
To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts
int num_hosts;

display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.
num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list for that
display. The X server must be on the same host as the client process, or a BadAccess error
results. If you remove your machine from the access list, you can no longer connect to that
server, and this operation cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

195

9.8.2. Changing, Enabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the same host as
the X server and/or have been given permission in the initial authorization at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl (display, mode)
Display *display;

int mode;
display Specifies the connection to the X server.
mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access control list at
each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.
To enable access control, use XEnableAccessControl.

XEnableAccessControl (display)
Display *display;
display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each connec-
tion setup.

XEnableAccessControl can generate a BadAccess error.
To disable access control, use XDisableAccessControl.

XDisableAccessControl (display)
Display *display;
display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at each connec-
tion setup.

XDisableAccessControl can generate a BadAccess error.

196

Chapter 10

Events

A client application communicates with the X server through the connection you establish with
the XOpenDisplay function. A client application sends requests to the X server over this con-
nection. These requests are made by the Xlib functions that are called in the client application.
Many Xlib functions cause the X server to generate events, and the user’s typing or moving the
pointer can generate events asynchronously. The X server returns events to the client on the same
connection.

This chapter discusses the following topics associated with events:

. Event types

. Event structures
. Event masks
. Event processing

Functions for handling events are dealt with in the next chapter.

10.1. Event Types

An event is data generated asynchronously by the X server as a result of some device activity or
as side effects of a request sent by an Xlib function. Device-related events propagate from the
source window to ancestor windows until some client application has selected that event type or
until the event is explicitly discarded. The X server generally sends an event to a client applica-
tion only if the client has specifically asked to be informed of that event type, typically by setting
the event-mask attribute of the window. The mask can also be set when you create a window or
by changing the window’s event-mask. You can also mask out events that would propagate to
ancestor windows by manipulating the do-not-propagate mask of the window’s attributes. How-
ever, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a corre-
sponding constant name is defined in <X11/X.h>, which is used when referring to an event type.
The following table lists the event category and its associated event type or types. The processing
associated with these events is discussed in section 10.5.

Event Category Event Type

Keyboard events KeyPress, KeyRelease

Pointer events ButtonPress, ButtonRelease, MotionNotify
Window crossing events EnterNotify, LeaveNotify

Input focus events FocusIn, FocusOut

Keymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NoExpose

197

Event Category Event Type

Structure control events CirculateRequest, ConfigureRequest, MapRequest,
ResizeRequest
Window state notification events CirculateNotify, ConfigureNotify, CreateNotify,

DestroyNotify, GravityNotify, MapNotify, Map-
pingNotify, ReparentNotify, UnmapNotify,

VisibilityNotify
Colormap state notification event ColormapNotify
Client communication events ClientMessage, PropertyNotify, SelectionClear,

SelectionNotify, SelectionRequest

10.2. Event Structures

For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the event struc-
tures have the following common members:

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For example,
when the X server reports a GraphicsExpose event to a client application, it sends an XGraph-
icsExposeEvent structure with the type member set to GraphicsExpose. The display member is
set to a pointer to the display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set from the serial number
reported in the protocol but expanded from the 16-bit least-significant bits to a full 32-bit value.
The window member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events received
while waiting for a reply in an event queue for later use. Xlib also provides functions that allow
you to check events in the event queue (see section 11.3).

In addition to the individual structures declared for each event type, the XEvent structure is a
union of the individual structures declared for each event type. Depending on the type, you
should access members of each event by using the XEvent union.

198

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

} XEvent;

An XEvent structure’s first entry always is the type member, which is set to the event type. The
second member always is the serial number of the protocol request that generated the event. The
third member always is send_event, which is a Bool that indicates if the event was sent by a dif-
ferent client. The fourth member always is a display, which is the display that the event was read
from. Except for keymap events, the fifth member always is a window, which has been carefully
selected to be useful to toolkit dispatchers. To avoid breaking toolkits, the order of these first five
entries is not to change. Most events also contain a time member, which is the time at which an
event occurred. In addition, a pointer to the generic event must be cast before it is used to access
any other information in the structure.

10.3. Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an event mask
to an Xlib event-handling function that takes an event_mask argument. The bits of the event

199

mask are defined in <X11/X.h>. Each bit in the event mask maps to an event mask name, which
describes the event or events you want the X server to return to a client application.

Unless the client has specifically asked for them, most events are not reported to clients when
they are generated. Unless the client suppresses them by setting graphics-exposures in the GC to
False, GraphicsExpose and NoExpose are reported by default as a result of XCopyPlane and
XCopyArea. SelectionClear, SelectionRequest, SelectionNotify, or ClientMessage cannot
be masked. Selection-related events are only sent to clients cooperating with selections (see sec-
tion 4.5). When the keyboard or pointer mapping is changed, MappingNotify is always sent to
clients.

The following table lists the event mask constants you can pass to the event_mask argument and
the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask No events wanted

KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
ButtondMotionMask Pointer motion while button 4 down
ButtonSMotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window

SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

Substructure notification wanted

Redirect structure requests on children

Any change in input focus wanted

Any change in property wanted

Any change in colormap wanted

Automatic grabs should activate with owner_events set
to True

10.4. Event Processing Overview

The event reported to a client application during event processing depends on which event masks
you provide as the event-mask attribute for a window. For some event masks, there is a one-to-
one correspondence between the event mask constant and the event type constant. For example,
if you pass the event mask ButtonPressMask, the X server sends back only ButtonPress events.
Most events contain a time member, which is the time at which an event occurred.

200

In other cases, one event mask constant can map to several event type constants. For example, if
you pass the event mask SubstructureNotifyMask, the X server can send back CirculateNo-

tify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify, MapNotify, Reparent-
Notify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass either
PointerMotionMask or ButtonMotionMask, the X server sends back a MotionNotify event.

The following table lists the event mask, its associated event type or types, and the structure name
associated with the event type. Some of these structures actually are typedefs to a generic struc-
ture that is shared between two event types. Note that N.A. appears in columns for which the
information is not applicable.

Event Mask Event Type Structure Generic Structure
ButtonMotionMask MotionNotify XPointerMovedEvent XMotionEvent
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask
ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent XButtonEvent
ColormapChangeMask ColormapNotify XColormapEvent
EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposeEvent
GCGraphicsExposures in GC ~ GraphicsExpose XGraphicsExposeEvent
NoExpose XNoExposeEvent
FocusChangeMask Focusln XFocusInEvent XFocusChangeEvent
FocusOut XFocusOutEvent XFocusChangeEvent
KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent
OwnerGrabButtonMask N.A. N.A.
PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMask N.A. N.A.
PropertyChangeMask PropertyNotify XPropertyEvent
ResizeRedirectMask ResizeRequest XResizeRequestEvent
StructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent

201

Event Mask Event Type Structure Generic Structure
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureRedirectMask CirculateRequest XCirculateRequestEvent
ConfigureRequest XConfigureRequestEvent
MapRequest XMapRequestEvent

N.A. ClientMessage XClientMessageEvent

N.A. MappingNotify XMappingEvent

N.A. SelectionClear XSelectionClearEvent

N.A. SelectionNotify XSelectionEvent

N.A. SelectionRequest XSelectionRequestEvent

VisibilityChangeMask VisibilityNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the different event

masks. The sections are organized according to these processing categories:

. Keyboard and pointer events

. Window crossing events

. Input focus events

. Keymap state notification events

. Exposure events

. Window state notification events

. Structure control events

. Colormap state notification events
. Client communication events

10.5. Keyboard and Pointer Events
This section discusses:
. Pointer button events

. Keyboard and pointer events

10.5.1. Pointer Button Events

The following describes the event processing that occurs when a pointer button press is processed

with the pointer in some window w and when no active pointer grab is in progress.

202

The X server searches the ancestors of w from the root down, looking for a passive grab to acti-
vate. If no matching passive grab on the button exists, the X server automatically starts an active
grab for the client receiving the event and sets the last-pointer-grab time to the current server
time. The effect is essentially equivalent to an XGrabButton with these client passed argu-
ments:

Argument Value

w The event window

event_mask The client’s selected pointer events on the event window

pointer_mode GrabModeAsync

keyboard_mode GrabModeAsync

owner_events True, if the client has selected OwnerGrabButton-
Mask on the event window, otherwise False

confine_to None

cursor None

The active grab is automatically terminated when the logical state of the pointer has all buttons
released. Clients can modify the active grab by calling XUngrabPointer and XChangeAc-
tivePointerGrab.

10.5.2. Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events KeyPress and KeyRe-
lease and the pointer events ButtonPress, ButtonRelease, and MotionNotify. For information
about the keyboard event-handling utilities, see chapter 11.

The X server reports KeyPress or KeyRelease events to clients wanting information about keys
that logically change state. Note that these events are generated for all keys, even those mapped
to modifier bits. The X server reports ButtonPress or ButtonRelease events to clients wanting
information about buttons that logically change state.

The X server reports MotionNotify events to clients wanting information about when the pointer
logically moves. The X server generates this event whenever the pointer is moved and the pointer
motion begins and ends in the window. The granularity of MotionNotify events is not guaran-
teed, but a client that selects this event type is guaranteed to receive at least one event when the
pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events, set KeyPress-
Mask, KeyReleaseMask, ButtonPressMask, and ButtonReleaseMask bits in the event-mask
attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits in the event-
mask attribute of the window.

. Button1MotionMask — Button5MotionMask

The client application receives MotionNotify events only when one or more of the speci-
fied buttons is pressed.

. ButtonMotionMask

The client application receives MotionNotify events only when at least one button is
pressed.

203

. PointerMotionMask

The client application receives MotionNotify events independent of the state of the pointer
buttons.

J PointerMotionHintMask

If PointerMotionHintMask is selected in combination with one or more of the above
masks, the X server is free to send only one MotionNotify event (with the is_hint member
of the XPointerMovedEvent structure set to NotifyHint) to the client for the event win-
dow, until either the key or button state changes, the pointer leaves the event window, or the
client calls XQueryPointer or XGetMotionEvents. The server still may send Motion-
Notify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used by the X
server to report these events depends on the window’s position in the window hierarchy and
whether any intervening window prohibits the generation of these events. Starting with the
source window, the X server searches up the window hierarchy until it locates the first window
specified by a client as having an interest in these events. If one of the intervening windows has
its do-not-propagate-mask set to prohibit generation of the event type, the events of those types
will be suppressed. Clients can modify the actual window used for reporting by performing
active grabs and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

204

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x,y;
int X_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x,y;
int X_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

} XKeyEvent;

typedef XKeyEvent XKeyPressedEvent;

typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int X, y;
int X_root, y_root;
unsigned int state;
char is_hint;

/* ButtonPress or ButtonRelease */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */

/* milliseconds */

/* pointer X, y coordinates in event window */
/* coordinates relative to root */

/* key or button mask */

/* detail */

/* same screen flag */

/* KeyPress or KeyRelease */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */

/* milliseconds */

/* pointer X, y coordinates in event window */
/* coordinates relative to root */

/* key or button mask */

/* detail */

/* same screen flag */

/* MotionNotify */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window reported relative to */

/* root window that the event occurred on */
/* child window */

/* milliseconds */

/* pointer X, y coordinates in event window */
/* coordinates relative to root */

/* key or button mask */

/* detail */

205

Bool same_screen; /* same screen flag */
} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window, root, subwindow, time, X, y,
X_root, y_root, state, and same_screen. The window member is set to the window on which the
event was generated and is referred to as the event window. As long as the conditions previously
discussed are met, this is the window used by the X server to report the event. The root member
is set to the source window’s root window. The x_root and y_root members are set to the
pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as the
root window and can be either True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow member of the structure

is set to the child of the event window that is the source window or the child of the event window
that is an ancestor of the source window. Otherwise, the X server sets the subwindow member to
None. The time member is set to the time when the event was generated and is expressed in mil-
liseconds.

If the event window is on the same screen as the root window, the x and y members are set to the
coordinates relative to the event window’s origin. Otherwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons and modifier keys just
prior to the event, which is the bitwise inclusive OR of one or more of the button or modifier key
masks: ButtonlMask, Button2Mask, Button3Mask, ButtondMask, Button5Mask, Shift-
Mask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
ModSMask.

Each of these structures also has a member that indicates the detail. For the XKeyPressedEvent
and XKeyReleasedEvent structures, this member is called a keycode. It is set to a number that
represents a physical key on the keyboard. The keycode is an arbitrary representation for any key
on the keyboard (see sections 12.7 and 16.1).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this member is called
button. It represents the pointer button that changed state and can be the Buttonl, Button2,
Button3, Buttond, or ButtonS value. For the XPointerMovedEvent structure, this member is
called is_hint. It can be set to NotifyNormal or NotifyHint.

Some of the symbols mentioned in this section have fixed values, as follows:

Symbol Value
Button1MotionMask (1L<<8)
Button2MotionMask (1L<<9)
Button3MotionMask (1L<<10)
ButtondMotionMask (1L<<11)
Button5SMotionMask (1L<<12)
Button1Mask (1<<8)
Button2Mask (1<<9)
Button3Mask (1<<10)
ButtondMask (1<<11)

206

Symbol Value

ButtonSMask (1<<12)
ShiftMask (1<<0)
LockMask (I<<1)
ControlMask (1<<2)
Mod1Mask (1<<3)
Mod2Mask (1<<4)
Mod3Mask (1<<5)
Mod4Mask (1<<6)
Mod5Mask (1<<7)
Buttonl 1
Button2 2
Button3 3
Buttond 4
Button5 5

10.6. Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events EnterNotify
and LeaveNotify. If a pointer motion or a window hierarchy change causes the pointer to be in a
different window than before, the X server reports EnterNotify or LeaveNotify events to clients
who have selected for these events. All EnterNotify and LeaveNotify events caused by a hierar-
chy change are generated after any hierarchy event (UnmapNotify, MapNotify, ConfigureNo-
tify, GravityNotify, CirculateNotify) caused by that change; however, the X protocol does not
constrain the ordering of EnterNotify and LeaveNotify events with respect to FocusOut, Visi-
bilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer moves but
only when the pointer motion begins and ends in a single window. An EnterNotify or LeaveNo-
tify event also can be generated when some client application calls XGrabPointer and XUn-
grabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or LeaveWindow-
Mask bits of the event-mask attribute of the window.

The structure for these event types contains:

207

typedef struct {

int type;

unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;

int X, y;

int X_root, y_root;
int mode;

int detail;

Bool same_screen;
Bool focus;
unsigned int state;

/* EnterNotify or LeaveNotify */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window reported relative to */

/* root window that the event occurred on */

/* child window */

/* milliseconds */

/* pointer X, y coordinates in event window */
/* coordinates relative to root */

/* NotifyNormal, NotifyGrab, NotifyUngrab */

/>X<

* Notify Ancestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual

*/

/* same screen flag */

/* boolean focus */

/* key or button mask */

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

The window member is set to the window on which the EnterNotify or LeaveNotify event was
generated and is referred to as the event window. This is the window used by the X server to
report the event, and is relative to the root window on which the event occurred. The root mem-
ber is set to the root window of the screen on which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of the
pointer, the subwindow component is set to that child. Otherwise, the X server sets the subwin-
dow member to None. For an EnterNotify event, if a child of the event window contains the
final pointer position, the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is expressed in millisec-
onds. The x and y members are set to the coordinates of the pointer position in the event window.
This position is always the pointer’s final position, not its initial position. If the event window is
on the same screen as the root window, x and y are the pointer coordinates relative to the event
window’s origin. Otherwise, x and y are set to zero. The x_root and y_root members are set to
the pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as the
root window and can be either True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus window or an inferior
of the focus window. The X server can set this member to either True or False. If True, the
event window is the focus window or an inferior of the focus window. If False, the event win-
dow is not the focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and modifier keys just prior to
the event. The X server can set this member to the bitwise inclusive OR of one or more of the
button or modifier key masks: Button1Mask, Button2Mask, Button3Mask, Button4dMask,

208

ButtonSMask, ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events, pseudo-motion events
when a grab activates, or pseudo-motion events when a grab deactivates. The X server can set
this member to NotifyNormal, NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor, NotifyVirtual,
NotifyInferior, NotifyNonlinear, or NotifyNonlinearVirtual.

10.6.1. Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from one window to
another window. Normal events are identified by XEnterWindowEvent or XLeaveWindow-
Event structures whose mode member is set to NotifyNormal.

. When the pointer moves from window A to window B and A is an inferior of B, the X
server does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyAncestor.

- It generates a LeaveNotify event on each window between window A and window
B, exclusive, with the detail member of each XLeaveWindowEvent structure set to
NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail member of the XEn-
terWindowEvent structure set to NotifyInferior.

. When the pointer moves from window A to window B and B is an inferior of A, the X
server does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyInferior.

- It generates an EnterNotify event on each window between window A and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set to
NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail member of the XEn-
terWindowEvent structure set to NotifyAncestor.

. When the pointer moves from window A to window B and window C is their least common
ancestor, the X server does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear .

- It generates a LeaveNotify event on each window between window A and window
C, exclusive, with the detail member of each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual.

- It generates an EnterNotify event on each window between window C and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set to
NotifyNonlinearVirtual.

- It generates an EnterNotify event on window B, with the detail member of the XEn-
terWindowEvent structure set to NotifyNonlinear.

. When the pointer moves from window A to window B on different screens, the X server
does the following:

209

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a LeaveNotify event on each window
above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

- If window B is not a root window, it generates an EnterNotify event on each win-
dow from window B’s root down to but not including window B, with the detail
member of each XEnterWindowEvent structure set to NotifyNonlinear Virtual.

- It generates an EnterNotify event on window B, with the detail member of the XEn-
terWindowEvent structure set to NotifyNonlinear.

10.6.2. Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a pointer grab
activates or deactivates. Events in which the pointer grab activates are identified by XEnterWin-
dowEvent or XLeaveWindowEvent structures whose mode member is set to NotifyGrab.
Events in which the pointer grab deactivates are identified by XEnterWindowEvent or
XLeaveWindowEvent structures whose mode member is set to NotifyUngrab (see XGrab-
Pointer).

. When a pointer grab activates after any initial warp into a confine_to window and before
generating any actual ButtonPress event that activates the grab, G is the grab_window for
the grab, and P is the window the pointer is in, the X server does the following:

- It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the mode
members of the XEnterWindowEvent and XLeaveWindowEvent structures set to
NotifyGrab. These events are generated as if the pointer were to suddenly warp
from its current position in P to some position in G. However, the pointer does not
warp, and the X server uses the pointer position as both the initial and final positions
for the events.

. When a pointer grab deactivates after generating any actual ButtonRelease event that
deactivates the grab, G is the grab_window for the grab, and P is the window the pointer is
in, the X server does the following:

- It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the mode
members of the XEnterWindowEvent and XLeaveWindowEvent structures set to
NotifyUngrab. These events are generated as if the pointer were to suddenly warp
from some position in G to its current position in P. However, the pointer does not
warp, and the X server uses the current pointer position as both the initial and final
positions for the events.

10.7. Input Focus Events

This section describes the processing that occurs for the input focus events FocusIn and Focu-
sOut. The X server can report FocusIn or FocusOut events to clients wanting information
about when the input focus changes. The keyboard is always attached to some window (typically,
the root window or a top-level window), which is called the focus window. The focus window
and the position of the pointer determine the window that receives keyboard input. Clients may
need to know when the input focus changes to control highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the FocusChangeMask bit in the event-mask
attribute of the window.

210

The structure for these event types contains:

typedef struct {

int type; /* Focusln or FocusOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* window of event */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;
/>l<

* Notify Ancestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*/
} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or FocusOut event was gener-
ated. This is the window used by the X server to report the event. The mode member is set to
indicate whether the focus events are normal focus events, focus events while grabbed, focus
events when a grab activates, or focus events when a grab deactivates. The X server can set the
mode member to NotifyNormal, NotifyWhileGrabbed, NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any UnmapNotify event;
however, the X protocol does not constrain the ordering of FocusQut events with respect to gen-
erated EnterNotify, LeaveNotify, VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear, NotifyNonlinearVirtual,
NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

10.7.1. Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent structures whose
mode member is set to NotifyNormal. Focus events while grabbed are identified by XFocusIn-
Event or XFocusOutEvent structures whose mode member is set to NotifyWhileGrabbed.
The X server processes normal focus and focus events while grabbed according to the following:

. When the focus moves from window A to window B, A is an inferior of B, and the pointer
is in window P, the X server does the following:

- It generates a FocusOut event on window A, with the detail member of the XFocu-
sOutEvent structure set to NotifyAncestor.

- It generates a FocusOut event on each window between window A and window B,
exclusive, with the detail member of each XFocusOutEvent structure set to Noti-
fyVirtual.

- It generates a FocusIn event on window B, with the detail member of the XFocu-
sOutEvent structure set to NotifyInferior.

211

If window P is an inferior of window B but window P is not window A or an inferior
or ancestor of window A, it generates a FocusIn event on each window below win-
dow B, down to and including window P, with the detail member of each XFocusIn-
Event structure set to NotifyPointer.

When the focus moves from window A to window B, B is an inferior of A, and the pointer
is in window P, the X server does the following:

If window P is an inferior of window A but P is not an inferior of window B or an
ancestor of B, it generates a FocusQut event on each window from window P up to
but not including window A, with the detail member of each XFocusOutEvent
structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFocu-
sOutEvent structure set to NotifyInferior.

It generates a FocusIn event on each window between window A and window B,
exclusive, with the detail member of each XFocusInEvent structure set to Noti-
fyVirtual.

It generates a FocusIn event on window B, with the detail member of the XFocusIn-
Event structure set to NotifyAncestor.

When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on each win-
dow from window P up to but not including window A, with the detail member of the
XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFocu-
sOutEvent structure set to NotifyNonlinear.

It generates a FocusOut event on each window between window A and window C,
exclusive, with the detail member of each XFocusOutEvent structure set to Noti-
fyNonlinearVirtual.

It generates a FocusIn event on each window between C and B, exclusive, with the
detail member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on window B, with the detail member of the XFocusIn-
Event structure set to NotifyNonlinear.

If window P is an inferior of window B, it generates a FocusIn event on each win-
dow below window B down to and including window P, with the detail member of
the XFocusInEvent structure set to NotifyPointer.

When the focus moves from window A to window B on different screens and the pointer is
in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusQut event on each win-
dow from window P up to but not including window A, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFocu-
sOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOut event on each window
above window A up to and including its root, with the detail member of each XFocu-
sOutEvent structure set to NotifyNonlinearVirtual.

212

If window B is not a root window, it generates a FocusIn event on each window
from window B’s root down to but not including window B, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on window B, with the detail member of each XFo-
cusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window B, it generates a FocusIn event on each win-
dow below window B down to and including window P, with the detail member of
each XFocusInEvent structure set to NotifyPointer.

When the focus moves from window A to PointerRoot (events sent to the window under
the pointer) or None (discard), and the pointer is in window P, the X server does the fol-
lowing:

If window P is an inferior of window A, it generates a FocusOut event on each win-
dow from window P up to but not including window A, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFocu-
sOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOQut event on each window
above window A up to and including its root, with the detail member of each XFocu
sOutEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on the root window of all screens, with the detail mem-
ber of each XFocusInEvent structure set to NotifyPointerRoot (or NotifyDetail-
None).

If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P’s root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the pointer) or
None to window A, and the pointer is in window P, the X server does the following:

If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to NotifyPointerRoot (or NotifyDetailNone).

If window A is not a root window, it generates a FocusIn event on each window
from window A’s root down to but not including window A, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on window A, with the detail member of the XFo-
cusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window A, it generates a FocusIn event on each win-
dow below window A down to and including window P, with the detail member of
each XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the pointer) to
None (or vice versa), and the pointer is in window P, the X server does the following:

If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

213

- It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to either NotifyPointerRoot or NotifyDetailNone.

- It generates a FocusIn event on all root windows, with the detail member of each
XFocusInEvent structure set to NotifyDetailNone or NotifyPointerRoot.

- If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P’s root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer .

10.7.2. Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by XFocusInEvent or XFocu-
sOutEvent structures whose mode member is set to NotifyGrab. Focus events in which the
keyboard grab deactivates are identified by XFocusInEvent or XFocusOutEvent structures
whose mode member is set to NotifyUngrab (see XGrabKeyboard).

. When a keyboard grab activates before generating any actual KeyPress event that activates
the grab, G is the grab_window, and F is the current focus, the X server does the following:

- It generates FocusIn and FocusOut events, with the mode members of the XFo-
cusInEvent and XFocusOutEvent structures set to NotifyGrab. These events are
generated as if the focus were to change from F to G.

. When a keyboard grab deactivates after generating any actual KeyRelease event that deac-
tivates the grab, G is the grab_window, and F is the current focus, the X server does the fol-
lowing:

- It generates FocusIn and FocusOut events, with the mode members of the XFo-
cusInEvent and XFocusOutEvent structures set to NotifyUngrab. These events
are generated as if the focus were to change from G to F.

10.8. Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about changes in
their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask attribute of
the window. The X server generates this event immediately after every EnterNotify and
FocusIn event.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
char key_vector[32];
} XKeymapEvent;

The window member is not used but is present to aid some toolkits. The key_vector member is
set to the bit vector of the keyboard. Each bit set to 1 indicates that the corresponding key is cur-
rently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys

214

8N to 8N + 7 with the least significant bit in the byte representing key 8N.

10.9. Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the windows
are obscured or reconfigured. Some implementations may preserve the contents of windows.
Other implementations are free to destroy the contents of windows when exposed. X expects
client applications to assume the responsibility for restoring the contents of an exposed window
region. (An exposed window region describes a formerly obscured window whose region
becomes visible.) Therefore, the X server sends Expose events describing the window and the
region of the window that has been exposed. A naive client application usually redraws the entire
window. A more sophisticated client application redraws only the exposed region.

10.9.1. Expose Events

The X server can report Expose events to clients wanting information about when the contents of
window regions have been lost. The circumstances in which the X server generates Expose
events are not as definite as those for other events. However, the X server never generates
Expose events on windows whose class you specified as InputOnly. The X server can generate
Expose events when no valid contents are available for regions of a window and either the
regions are visible, the regions are viewable and the server is (perhaps newly) maintaining back-
ing store on the window, or the window is not viewable but the server is (perhaps newly) honoring
the window’s backing-store attribute of Always or WhenMapped. The regions decompose into
an (arbitrary) set of rectangles, and an Expose event is generated for each rectangle. For any
given window, the X server guarantees to report contiguously all of the regions exposed by some
action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /* Expose */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int x,y;

int width, height;

int count; /* if nonzero, at least this many more */

} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members are set to
the coordinates relative to the window’s origin and indicate the upper-left corner of the rectangle.
The width and height members are set to the size (extent) of the rectangle. The count member is
set to the number of Expose events that are to follow. If count is zero, no more Expose events
follow for this window. However, if count is nonzero, at least that number of Expose events (and
possibly more) follow for this window. Simple applications that do not want to optimize redis-
play by distinguishing between subareas of its window can just ignore all Expose events with
nonzero counts and perform full redisplays on events with zero counts.

215

10.9.2. GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting information about when a
destination region could not be computed during certain graphics requests: XCopyArea or
XCopyPlane. The X server generates this event whenever a destination region could not be
computed because of an obscured or out-of-bounds source region. In addition, the X server guar-
antees to report contiguously all of the regions exposed by some graphics request (for example,
copying an area of a drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics request that might produce a
GraphicsExpose event does not produce any. In other words, the client is really asking for a
GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-exposure
attribute of the graphics context to True. You also can set the graphics-expose attribute when
creating a graphics context using XCreateGC or by calling XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {

int type;

unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
intx,y;

int width, height;

int count;

int major_code;

int minor_code;

} XGraphicsExposeEvent;

typedef struct {

int type;

unsigned long serial;
Bool send_event;
Display *display;

/* GraphicsExpose */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

/* NoExpose */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

Drawable drawable;
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and minor_code. The
drawable member is set to the drawable of the destination region on which the graphics request
was to be performed. The major_code member is set to the graphics request initiated by the client
and can be either X_CopyArea or X_CopyPlane. If it is X_CopyArea, a call to XCopyArea
initiated the request. If it is X_CopyPlane, a call to XCopyPlane initiated the request. These
constants are defined in <X11/Xproto.h>. The minor_code member, like the major_code mem-
ber, indicates which graphics request was initiated by the client. However, the minor_code mem-
ber is not defined by the core X protocol and will be zero in these cases, although it may be used
by an extension.

216

The XGraphicsExposeEvent structure has these additional members: x, y, width, height, and
count. The x and y members are set to the coordinates relative to the drawable’s origin and indi-
cate the upper-left corner of the rectangle. The width and height members are set to the size
(extent) of the rectangle. The count member is set to the number of GraphicsExpose events to
follow. If count is zero, no more GraphicsExpose events follow for this window. However, if
count is nonzero, at least that number of GraphicsExpose events (and possibly more) are to fol-
low for this window.

10.10. Window State Change Events

The following sections discuss:

. CirculateNotify events
. ConfigureNotify events
. CreateNotify events

. DestroyNotify events
. GravityNotify events
. MapNotify events

. MappingNotify events
. ReparentNotify events
. UnmapNotify events

. VisibilityNotify events

10.10.1. CirculateNotify Events

The X server can report CirculateNotify events to clients wanting information about when a
window changes its position in the stack. The X server generates this event type whenever a win-
dow is actually restacked as a result of a client application calling XCirculateSubwindows,
XCirculateSubwindowsUp, or XCirculateSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, circulating any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* CirculateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateEvent;

The event member is set either to the restacked window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. The window member is set to the win-
dow that was restacked. The place member is set to the window’s position after the restack
occurs and is either PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the window is now

217

on top of all siblings. If it is PlaceOnBottom, the window is now below all siblings.

10.10.2. ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting information about actual
changes to a window’s state, such as size, position, border, and stacking order. The X server gen-
erates this event type whenever one of the following configure window requests made by a client
application actually completes:

. A window’s size, position, border, and/or stacking order is reconfigured by calling XCon-
figureWindow.

. The window’s position in the stacking order is changed by calling XLowerWindow,
XRaiseWindow, or XRestackWindows.

. A window is moved by calling XMoveWindow.

. A window’s size is changed by calling XResizeWindow.

. A window’s size and location is changed by calling XMoveResizeWindow .

. A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

. A window’s border width is changed by calling XSetWindowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* ConfigureNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int X, y;

int width, height;

int border_width;

Window above;

Bool override_redirect;
} XConfigureEvent;

The event member is set either to the reconfigured window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. The window member is set to the win-
dow whose size, position, border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window’s origin and indicate
the position of the upper-left outside corner of the window. The width and height members are
set to the inside size of the window, not including the border. The border_width member is set to
the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the X
server sets this member to None, the window whose state was changed is on the bottom of the

218

stack with respect to sibling windows. However, if this member is set to a sibling window, the
window whose state was changed is placed on top of this sibling window.

The override_redirect member is set to the override-redirect attribute of the window. Window
manager clients normally should ignore this window if the override_redirect member is True.

10.10.3. CreateNotify Events

The X server can report CreateNotify events to clients wanting information about creation of
windows. The X server generates this event whenever a client application creates a window by
calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the event-mask attribute
of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {

int type; /* CreateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent; /* parent of the window */

Window window; /* window id of window created */

int X, y; /* window location */

int width, height; /* size of window */

int border_width; /* border width */

Bool override_redirect; /* creation should be overridden */

} XCreateWindowEvent;

The parent member is set to the created window’s parent. The window member specifies the cre-
ated window. The x and y members are set to the created window’s coordinates relative to the
parent window’s origin and indicate the position of the upper-left outside corner of the created
window. The width and height members are set to the inside size of the created window (not
including the border) and are always nonzero. The border_width member is set to the width of
the created window’s border, in pixels. The override_redirect member is set to the override-redi-
rect attribute of the window. Window manager clients normally should ignore this window if the
override_redirect member is True.

10.10.4. DestroyNotify Events

The X server can report DestroyNotify events to clients wanting information about which win-
dows are destroyed. The X server generates this event whenever a client application destroys a
window by calling XDestroyWindow or XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given window, DestroyNotify is
generated on all inferiors of the window before being generated on the window itself. The X pro-
tocol does not constrain the ordering among siblings and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, destroying any child generates an event).

219

The structure for this event type contains:

typedef struct {

int type; /* DestroyNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
} XDestroyWindowEvent;

The event member is set either to the destroyed window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. The window member is set to the win-
dow that is destroyed.

10.10.5. GravityNotify Events

The X server can report GravityNotify events to clients wanting information about when a win-
dow is moved because of a change in the size of its parent. The X server generates this event
whenever a client application actually moves a child window as a result of resizing its parent by
calling XConfigureWindow, XMoveResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, any child that is moved because its parent has been resized generates an event).

The structure for this event type contains:

typedef struct {

int type; /* GravityNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
int X, y;

} XGravityEvent;

The event member is set either to the window that was moved or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window member is set to
the child window that was moved. The x and y members are set to the coordinates relative to the
new parent window’s origin and indicate the position of the upper-left outside corner of the win-
dow.

10.10.6. MapNotify Events

The X server can report MapNotify events to clients wanting information about which windows
are mapped. The X server generates this event type whenever a client application changes the
window’s state from unmapped to mapped by calling XMapWindow, XMapRaised, XMap-
Subwindows, XReparentWindow, or as a result of save-set processing.

220

-

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* MapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool override_redirect; /* boolean, is override set... */
} XMapEvent;

The event member is set either to the window that was mapped or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window member is set to
the window that was mapped. The override_redirect member is set to the override-redirect
attribute of the window. Window manager clients normally should ignore this window if the
override-redirect attribute is True, because these events usually are generated from pop-ups,
which override structure control.

10.10.7. MappingNotify Events

The X server reports MappingNotify events to all clients. There is no mechanism to express dis-
interest in this event. The X server generates this event type whenever a client application suc-
cessfully calls:

. XSetModifierMapping to indicate which KeyCodes are to be used as modifiers
. XChangeKeyboardMapping to change the keyboard mapping
. XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {

int type; /* MappingNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

int request; /* one of MappingModifier, MappingKeyboard,
MappingPointer */

int first_keycode; /* first keycode */

int count; /* defines range of change w. first_keycode*/

} XMappingEvent;

The request member is set to indicate the kind of mapping change that occurred and can be Map-
pingModifier, MappingKeyboard, or MappingPointer. If it is MappingModifier, the

221

modifier mapping was changed. If it is MappingKeyboard, the keyboard mapping was changed.
If it is MappingPointer, the pointer button mapping was changed. The first_keycode and count
members are set only if the request member was set to MappingKeyboard. The number in
first_keycode represents the first number in the range of the altered mapping, and count represents
the number of keycodes altered.

To update the client application’s knowledge of the keyboard, you should call XRefreshKey-
boardMapping.

10.10.8. ReparentNotify Events

The X server can report ReparentNotify events to clients wanting information about changing a
window’s parent. The X server generates this event whenever a client application calls XRepar-
entWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of either the old or
the new parent window (in which case, reparenting any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* ReparentNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Window parent;

int x,y;

Bool override_redirect;
} XReparentEvent;

The event member is set either to the reparented window or to the old or the new parent, depend-
ing on whether StructureNotify or SubstructureNotify was selected. The window member is
set to the window that was reparented. The parent member is set to the new parent window. The
x and y members are set to the reparented window’s coordinates relative to the new parent win-
dow’s origin and define the upper-left outer corner of the reparented window. The override_redi-
rect member is set to the override-redirect attribute of the window specified by the window mem-
ber. Window manager clients normally should ignore this window if the override_redirect mem-
ber is True.

10.10.9. UnmapNotify Events

The X server can report UnmapNotify events to clients wanting information about which win-
dows are unmapped. The X server generates this event type whenever a client application
changes the window’s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, unmapping any child window generates an event).

The structure for this event type contains:

222

typedef struct {

int type; /* UnmapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool from_configure;
} XUnmapEvent;

The event member is set either to the unmapped window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. This is the window used by the X server
to report the event. The window member is set to the window that was unmapped. The
from_configure member is set to True if the event was generated as a result of a resizing of the
window’s parent when the window itself had a win_gravity of UnmapGravity.

10.10.10. VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting any change in the visibility of
the specified window. A region of a window is visible if someone looking at the screen can actu-
ally see it. The X server generates this event whenever the visibility changes state. However, this
event is never generated for windows whose class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after any hierarchy event
(UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, CirculateNotify) caused by
that change. Any VisibilityNotify event on a given window is generated before any Expose
events on that window, but it is not required that all VisibilityNotify events on all windows be
generated before all Expose events on all windows. The X protocol does not constrain the order-
ing of VisibilityNotify events with respect to FocusOut, EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the event-mask attribute
of the window.

The structure for this event type contains:

typedef struct {

int type; /* VisibilityNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state member is set
to the state of the window’s visibility and can be VisibilityUnobscured, VisibilityPartiallyOb-
scured, or VisibilityFullyObscured. The X server ignores all of a window’s subwindows when
determining the visibility state of the window and processes VisibilityNotify events according to
the following:

223

. When the window changes state from partially obscured, fully obscured, or not viewable to
viewable and completely unobscured, the X server generates the event with the state mem-
ber of the XVisibilityEvent structure set to VisibilityUnobscured.

. When the window changes state from viewable and completely unobscured or not viewable
to viewable and partially obscured, the X server generates the event with the state member
of the XVisibilityEvent structure set to VisibilityPartiallyObscured.

. When the window changes state from viewable and completely unobscured, viewable and
partially obscured, or not viewable to viewable and fully obscured, the X server generates
the event with the state member of the XVisibilityEvent structure set to VisibilityFully-
Obscured.

10.11. Structure Control Events

This section discusses:

. CirculateRequest events
. ConfigureRequest events
. MapRequest events

. ResizeRequest events

10.11.1. CirculateRequest Events

The X server can report CirculateRequest events to clients wanting information about when
another client initiates a circulate window request on a specified window. The X server generates
this event type whenever a client initiates a circulate window request on a window and a subwin-
dow actually needs to be restacked. The client initiates a circulate window request on the window
by calling XCirculateSubwindows, XCirculateSubwindowsUp, or XCirculateSubwindows-
Down.

To receive CirculateRequest events, set the SubstructureRedirectMask in the event-mask
attribute of the window. Then, in the future, the circulate window request for the specified win-
dow is not executed, and thus, any subwindow’s position in the stack is not changed. For exam-
ple, suppose a client application calls XCirculateSubwindowsUp to raise a subwindow to the
top of the stack. If you had selected SubstructureRedirectMask on the window, the X server
reports to you a CirculateRequest event and does not raise the subwindow to the top of the
stack.

The structure for this event type contains:

typedef struct {

int type; /* CirculateRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set to the subwindow to
be restacked. The place member is set to what the new position in the stacking order should be

224

and is either PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the subwindow should be
on top of all siblings. If it is PlaceOnBottom, the subwindow should be below all siblings.

10.11.2. ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting information about when a
different client initiates a configure window request on any child of a specified window. The con-
figure window request attempts to reconfigure a window’s size, position, border, and stacking
order. The X server generates this event whenever a different client initiates a configure window
request on a window by calling XConfigureWindow, XLowerWindow, XRaiseWindow,
XMapRaised, XMoveResizeWindow, XMoveWindow, XResizeWindow, XRestackWin-
dows, or XSetWindowBorderWidth.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit in the event-mask
attribute of the window. ConfigureRequest events are generated when a Configure Window
protocol request is issued on a child window by another client. For example, suppose a client
application calls XLowerWindow to lower a window. If you had selected SubstructureRedi-
rectMask on the parent window and if the override-redirect attribute of the window is set to
False, the X server reports a ConfigureRequest event to you and does not lower the specified
window.

The structure for this event type contains:

typedef struct {

int type; /* ConfigureRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
int X, y;
int width, height;
int border_width;
Window above;
int detail; /* Above, Below, Toplf, Bottomlf, Opposite */
unsigned long value_mask;
} XConfigureRequestEvent;

The parent member is set to the parent window. The window member is set to the window whose
size, position, border width, and/or stacking order is to be reconfigured. The value_mask member
indicates which components were specified in the ConfigureWindow protocol request. The cor-
responding values are reported as given in the request. The remaining values are filled in from
the current geometry of the window, except in the case of above (sibling) and detail (stack-mode),
which are reported as None and Above, respectively, if they are not given in the request.

10.11.3. MapRequest Events

The X server can report MapRequest events to clients wanting information about a different
client’s desire to map windows. A window is considered mapped when a map window request
completes. The X server generates this event whenever a different client initiates a map window
request on an unmapped window whose override_redirect member is set to False. Clients initiate
map window requests by calling XMapWindow, XMapRaised, or XMapSubwindows.

225

To receive MapRequest events, set the SubstructureRedirectMask bit in the event-mask
attribute of the window. This means another client’s attempts to map a child window by calling
one of the map window request functions is intercepted, and you are sent a MapRequest instead.
For example, suppose a client application calls XMapWindow to map a window. If you (usually
a window manager) had selected SubstructureRedirectMask on the parent window and if the
override-redirect attribute of the window is set to False, the X server reports a MapRequest
event to you and does not map the specified window. Thus, this event gives your window man-
ager client the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {

int type; /* MapRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
} XMapRequestEvent;

The parent member is set to the parent window. The window member is set to the window to be
mapped.

10.11.4. ResizeRequest Events

The X server can report ResizeRequest events to clients wanting information about another
client’s attempts to change the size of a window. The X server generates this event whenever
some other client attempts to change the size of the specified window by calling XConfig-
ureWindow, XResizeWindow, or XMoveResizeWindow .

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask attribute of the
window. Any attempts to change the size by other clients are then redirected.

The structure for this event type contains:

typedef struct {

int type; /* ResizeRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
int width, height;
} XResizeRequestEvent;

The window member is set to the window whose size another client attempted to change. The
width and height members are set to the inside size of the window, excluding the border.

10.12. Colormap State Change Events

The X server can report ColormapNotify events to clients wanting information about when the
colormap changes and when a colormap is installed or uninstalled. The X server generates this

226

event type whenever a client application:

. Changes the colormap member of the XSetWindowA ttributes structure by calling
XChangeWindowA ttributes, XFreeColormap, or XSetWindowColormap

. Installs or uninstalls the colormap by calling XInstallColormap or XUninstallColormap

To receive ColormapNotify events, set the ColormapChangeMask bit in the event-mask
attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /* ColormapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

Colormap colormap; /* colormap or None */

Bool new;

int state; /* Colormaplnstalled, ColormapUninstalled */

} XColormapEvent;

The window member is set to the window whose associated colormap is changed, installed, or
uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap member is set
to the colormap associated with the window. For a colormap that is changed by a call to XFree-
Colormap, the colormap member is set to None. The new member is set to indicate whether the
colormap for the specified window was changed or installed or uninstalled and can be True or
False. If it is True, the colormap was changed. If it is False, the colormap was installed or
uninstalled. The state member is always set to indicate whether the colormap is installed or unin-
stalled and can be ColormaplInstalled or ColormapUninstalled.

10.13. Client Communication Events
This section discusses:
. ClientMessage events

. PropertyNotify events

. SelectionClear events
. SelectionNotify events
. SelectionRequest events

10.13.1. ClientMessage Events

The X server generates ClientMessage events only when a client calls the function XSendE-
vent.

The structure for this event type contains:

227

typedef struct {

int type; /* ClientMessage */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom message_type;
int format;
union {
char b[20];
short s[10];
long 1[5];
} data;
} XClientMessageEvent;

The message_type member is set to an atom that indicates how the data should be interpreted by
the receiving client. The format member is set to 8, 16, or 32 and specifies whether the data
should be viewed as a list of bytes, shorts, or longs. The data member is a union that contains the
members b, s, and . The b, s, and | members represent data of twenty 8-bit values, ten 16-bit val-
ues, and five 32-bit values. Particular message types might not make use of all these values. The
X server places no interpretation on the values in the window, message_type, or data members.

10.13.2. PropertyNotify Events

The X server can report PropertyNotify events to clients wanting information about property
changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the event-mask attribute
of the window.

The structure for this event type contains:

typedef struct {

int type; /* PropertyNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

Atom atom;

Time time;

int state; /* PropertyNew Value or PropertyDelete */

} XPropertyEvent;

The window member is set to the window whose associated property was changed. The atom
member is set to the property’s atom and indicates which property was changed or desired. The
time member is set to the server time when the property was changed. The state member is set to
indicate whether the property was changed to a new value or deleted and can be PropertyNew-
Value or PropertyDelete. The state member is set to PropertyNewValue when a property of
the window is changed using XChangeProperty or XRotateWindowProperties (even when
adding zero-length data using XChangeProperty) and when replacing all or part of a property

228

with identical data using XChangeProperty or XRotateWindowProperties. The state member
is set to PropertyDelete when a property of the window is deleted using XDeleteProperty or, if
the delete argument is True, XGetWindowProperty.

10.13.3. SelectionClear Events

The X server reports SelectionClear events to the client losing ownership of a selection. The X
server generates this event type when another client asserts ownership of the selection by calling
XSetSelectionOwner .

The structure for this event type contains:

typedef struct {

int type; /* SelectionClear */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

The selection member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The window member is the window that was specified by the current
owner (the owner losing the selection) in its XSetSelectionOwner call.

10.13.4. SelectionRequest Events

The X server reports SelectionRequest events to the owner of a selection. The X server gener-
ates this event whenever a client requests a selection conversion by calling XConvertSelection
for the owned selection.

The structure for this event type contains:

typedef struct {

int type; /* SelectionRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

The owner member is set to the window that was specified by the current owner in its XSetSelec-
tionOwner call. The requestor member is set to the window requesting the selection. The selec-
tion member is set to the atom that names the selection. For example, PRIMARY is used to

229

indicate the primary selection. The target member is set to the atom that indicates the type the
selection is desired in. The property member can be a property name or None. The time member
is set to the timestamp or CurrentTime value from the ConvertSelection request.

The owner should convert the selection based on the specified target type and send a Selection-
Notify event back to the requestor. A complete specification for using selections is given in the X
Consortium standard Inter-Client Communication Conventions Manual.

10.13.5. SelectionNotify Events

This event is generated by the X server in response to a ConvertSelection protocol request when
there is no owner for the selection. When there is an owner, it should be generated by the owner
of the selection by using XSendEvent. The owner of a selection should send this event to a
requestor when a selection has been converted and stored as a property or when a selection con-
version could not be performed (which is indicated by setting the property member to None).

If None is specified as the property in the ConvertSelection protocol request, the owner should
choose a property name, store the result as that property on the requestor window, and then send a
SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {

int type; /* SelectionNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;
} XSelectionEvent;

The requestor member is set to the window associated with the requestor of the selection. The
selection member is set to the atom that indicates the selection. For example, PRIMARY is used
for the primary selection. The target member is set to the atom that indicates the converted type.
For example, PIXMAP is used for a pixmap. The property member is set to the atom that indi-
cates which property the result was stored on. If the conversion failed, the property member is set
to None. The time member is set to the time the conversion took place and can be a timestamp or
CurrentTime.

230

Chapter 11

Event Handling Functions

This chapter discusses the Xlib functions you can use to:

. Select events

. Handle the output buffer and the event queue
. Select events from the event queue

. Send and get events

. Handle protocol errors

Note

Some toolkits use their own event-handling functions and do not allow you to
interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to do with it,
execute some amount of code that results in changes to the display, and then wait for the next
event.

11.1. Selecting Events

There are two ways to select the events you want reported to your client application. One way is
to set the event_mask member of the XSetWindowAttributes structure when you call XCre-
ateWindow and XChangeWindowA ttributes. Another way is to use XSelectInput.

XSelectlnput(display, w, event_mask)
Display *display;
Window w;
long event_mask;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

The XSelectInput function requests that the X server report the events associated with the speci-
fied event mask. Initially, X will not report any of these events. Events are reported relative to a
window. If a window is not interested in a device event, it usually propagates to the closest ances-
tor that is interested, unless the do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same window but
not for other clients. Multiple clients can select for the same events on the same window with the
following restrictions:

. Multiple clients can select events on the same window because their event masks are dis-
joint. When the X server generates an event, it reports it to all interested clients.

231

. Only one client at a time can select CirculateRequest, ConfigureRequest, or MapRe-
quest events, which are associated with the event mask SubstructureRedirectMask.

. Only one client at a time can select a ResizeRequest event, which is associated with the
event mask ResizeRedirectMask.

. Only one client at a time can select a ButtonPress event, which is associated with the
event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate a BadWindow error.

11.2. Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in this sec-
tion flush the output buffer if the function would block or not return an event. That is, all requests
residing in the output buffer that have not yet been sent are transmitted to the X server. These
functions differ in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush (display)
Display *display;

display Specifies the connection to the X server.
The XFlush function flushes the output buffer. Most client applications need not use this func-
tion because the output buffer is automatically flushed as needed by calls to XPending, XNex-

tEvent, and XWindowEvent. Events generated by the server may be enqueued into the library’s
event queue.

To flush the output buffer and then wait until all requests have been processed, use XSync.

XSync (display, discard)
Display *display;

Bool discard;;
display Specifies the connection to the X server.
discard Specifies a Boolean value that indicates whether XSync discards all events on

the event queue.

The XSync function flushes the output buffer and then waits until all requests have been received
and processed by the X server. Any errors generated must be handled by the error handler. For
each protocol error received by Xlib, XSync calls the client application’s error handling routine
(see section 11.8.2). Any events generated by the server are enqueued into the library’s event
queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you passed
True, XSync discards all events in the queue, including those events that were on the queue
before XSync was called. Client applications seldom need to call XSync.

232

11.3. Event Queue Management

Xlib maintains an event queue. However, the operating system also may be buffering data in its
network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEventsQueued.

int XEventsQueued (display, mode)
Display *display;

int mode;
display Specifies the connection to the X server.
mode Specifies the mode. You can pass QueuedAlready, QueuedAfterFlush, or

QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of events already in the event
queue (and never performs a system call). If mode is QueuedAfterFlush, XEventsQueued
returns the number of events already in the queue if the number is nonzero. If there are no events
in the queue, XEventsQueued flushes the output buffer, attempts to read more events out of the
application’s connection, and returns the number read. If mode is QueuedAfterReading,
XEventsQueued returns the number of events already in the queue if the number is nonzero. If
there are no events in the queue, XEventsQueued attempts to read more events out of the appli-
cation’s connection without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events already in the queue.
XEventsQueued with mode QueuedAfterFlush is identical in behavior to XPending.
XEventsQueued with mode QueuedAlready is identical to the XQLength function.

To return the number of events that are pending, use XPending.

int XPending (display)
Display *display;

display Specifies the connection to the X server.
The XPending function returns the number of events that have been received from the X server

but have not been removed from the event queue. XPending is identical to XEventsQueued
with the mode QueuedAfterFlush specified.

11.4. Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. This section discusses how to:

. Obtain events, in order, and remove them from the queue

. Peek at events in the queue without removing them

. Obtain events that match the event mask or the arbitrary predicate procedures that you pro-
vide

11.4.1. Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

233

XNextEvent(display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.

event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the specified XEvent
structure and then removes it from the queue. If the event queue is empty, XNextEvent flushes
the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not remove the
event from the queue. If the queue is empty, XPeekEvent flushes the output buffer and blocks
until an event is received. It then copies the event into the client-supplied XEvent structure with-
out removing it from the event queue.

11.4.2. Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure that
determines if an event matches what you want. Your predicate procedure must decide if the event
is useful without calling any Xlib functions. If the predicate directly or indirectly causes the state
of the event queue to change, the result is not defined. If Xlib has been initialized for threads, the
predicate is called with the display locked and the result of a call by the predicate to any Xlib
function that locks the display is not defined unless the caller has first called XLockDisplay.

The predicate procedure and its associated arguments are:

Bool (*predicate)(display, event, arg)
Display *display;
XEvent *event;

XPointer arg;
display Specifies the connection to the X server.
event Specifies the XEvent structure.
arg Specifies the argument passed in from the XIfEvent, XCheckIfEvent, or

XPeekIfEvent function.

The predicate procedure is called once for each event in the queue until it finds a match. After
finding a match, the predicate procedure must return True. If it did not find a match, it must
return False.

234

To check the event queue for a matching event and, if found, remove the event from the queue,
use XIfEvent.

XIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

display Specifies the connection to the X server.

event_return Returns the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

The XIfEvent function completes only when the specified predicate procedure returns True for
an event, which indicates an event in the queue matches. XIfEvent flushes the output buffer if it
blocks waiting for additional events. XIfEvent removes the matching event from the queue and
copies the structure into the client-supplied XEvent structure.

To check the event queue for a matching event without blocking, use XCheckIfEvent.

Bool XCheckIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

When the predicate procedure finds a match, XCheckIfEvent copies the matched event into the
client-supplied XEvent structure and returns True. (This event is removed from the queue.) If
the predicate procedure finds no match, XCheckIfEvent returns False, and the output buffer will
have been flushed. All earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the event from the queue, use
XPeekIfEvent.

235

XPeekIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

The XPeekIfEvent function returns only when the specified predicate procedure returns True
for an event. After the predicate procedure finds a match, XPeekIfEvent copies the matched
event into the client-supplied XEvent structure without removing the event from the queue.
XPeekIfEvent flushes the output buffer if it blocks waiting for additional events.

11.4.3. Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event types, allowing
you to process events out of order.

To remove the next event that matches both a window and an event mask, use XWindowEvent.

XWindowEvent(display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.
w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XWindowEvent function searches the event queue for an event that matches both the speci-
fied window and event mask. When it finds a match, XWindowEvent removes that event from
the queue and copies it into the specified XEvent structure. The other events stored in the queue
are not discarded. If a matching event is not in the queue, XWindowEvent flushes the output
buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), use XCheck-
WindowEvent. This function is similar to XWindowEvent except that it never blocks and it
returns a Bool indicating if the event was returned.

236

Bool XCheckWindowEvent(display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.
w Specifies the window whose events you are interested in.
event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckWindowEvent function searches the event queue and then the events available on
the server connection for the first event that matches the specified window and event mask. If it
finds a match, XCheckWindowEvent removes that event, copies it into the specified XEvent
structure, and returns True. The other events stored in the queue are not discarded. If the event
you requested is not available, XCheckWindowEvent returns False, and the output buffer will
have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XMaskEvent function searches the event queue for the events associated with the specified
mask. When it finds a match, XMaskEvent removes that event and copies it into the specified
XEvent structure. The other events stored in the queue are not discarded. If the event you
requested is not in the queue, XMaskEvent flushes the output buffer and blocks until one is
received.

To return and remove the next event that matches an event mask (if any), use XCheck-
MaskEvent. This function is similar to XMaskEvent except that it never blocks and it returns a
Bool indicating if the event was returned.

237

Bool XCheckMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.
event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckMaskEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified mask. If it finds a match, XCheck-
MaskEvent removes that event, copies it into the specified XEvent structure, and returns True.
The other events stored in the queue are not discarded. If the event you requested is not available,
XCheckMaskEvent returns False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, use XCheckType-
dEvent.

Bool XCheckTypedEvent(display, event_type, event_return)
Display *display;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.

event_type Specifies the event type to be compared.
event_return Returns the matched event’s associated structure.

The XCheckTypedEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified type. If it finds a match, XCheck-
TypedEvent removes that event, copies it into the specified XEvent structure, and returns True.
The other events in the queue are not discarded. If the event is not available, XCheckTypedE-
vent returns False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type and a window, use
XCheckTypedWindowEvent.

238

Bool XCheckTypedWindowEvent(display, w, event_type, event_return)
Display *display;
Window w;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.
w Specifies the window.
event_type Specifies the event type to be compared.

event_return Returns the matched event’s associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any events avail-
able on the server connection for the first event that matches the specified type and window. If it
finds a match, XCheckTypedWindowEvent removes the event from the queue, copies it into the
specified XEvent structure, and returns True. The other events in the queue are not discarded.
If the event is not available, XCheckTypedWindowEvent returns False, and the output buffer
will have been flushed.

11.5. Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent(display, event)
Display *display;
XEvent *event;

display Specifies the connection to the X server.

event Specifies the event.

The XPutBackEvent function pushes an event back onto the head of the display’s event queue
by copying the event into the queue. This can be useful if you read an event and then decide that
you would rather deal with it later. There is no limit to the number of times in succession that
you can call XPutBackEvent.

11.6. Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This function is often used in selec-
tion processing. For example, the owner of a selection should use XSendEvent to send a Selec-
tionNotify event to a requestor when a selection has been converted and stored as a property.

239

Status XSendEvent(display, w, propagate, event_mask, event_send)
Display *display;
Window w;
Bool propagate;
long event_mask;
XEvent *event_send,

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, or PointerWindow, or InputFo-
cus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients should
receive the specified events, and ignores any active grabs. This function requires you to pass an
event mask. For a discussion of the valid event mask names, see section 10.3. This function uses
the w argument to identify the destination window as follows:

. If w is PointerWindow, the destination window is the window that contains the pointer.

. If w is InputFocus and if the focus window contains the pointer, the destination window is
the window that contains the pointer; otherwise, the destination window is the focus win-
dow.

To determine which clients should receive the specified events, XSendEvent uses the propagate
argument as follows:

. If event_mask is the empty set, the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.

. If propagate is False, the event is sent to every client selecting on destination any of the
event types in the event_mask argument.

. If propagate is True and no clients have selected on destination any of the event types in
event-mask, the destination is replaced with the closest ancestor of destination for which
some client has selected a type in event-mask and for which no intervening window has
that type in its do-not-propagate-mask. If no such window exists or if the window is an
ancestor of the focus window and InputFocus was originally specified as the destination,
the event is not sent to any clients. Otherwise, the event is reported to every client selecting
on the final destination any of the types specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the events defined by
an extension (or a BadValue error results) so that the X server can correctly byte-swap the con-
tents as necessary. The contents of the event are otherwise unaltered and unchecked by the X
server except to force send_event to True in the forwarded event and to set the serial number in
the event correctly; therefore these fields and the display field are ignored by XSendEvent.

XSendEvent returns zero if the conversion to wire protocol format failed and returns nonzero
otherwise.

XSendEvent can generate BadValue and BadWindow errors.

240

11.7. Getting Pointer Motion History

Some X server implementations will maintain a more complete history of pointer motion than is
reported by event notification. The pointer position at each pointer hardware interrupt may be
stored in a buffer for later retrieval. This buffer is called the motion history buffer. For example,
a few applications, such as paint programs, want to have a precise history of where the pointer
traveled. However, this historical information is highly excessive for most applications.

To determine the approximate maximum number of elements in the motion buffer, use XDisplay-
MotionBufferSize.

unsigned long XDisplayMotionBufferSize (display)
Display *display;

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer granularity than
is reported by MotionNotify events. The XGetMotionEvents function makes this history avail-
able.

To get the motion history for a specified window and time, use XGetMotionEvents.

XTimeCoord *XGetMotionEvents (display, w, start, stop, nevents_return)
Display *display;
Window w;
Time start, stop;
int *nevents_return;

display Specifies the connection to the X server.

w Specifies the window.

start

stop Specify the time interval in which the events are returned from the motion history

buffer. You can pass a timestamp or CurrentTime.

nevents_return Returns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that fall between
the specified start and stop times, inclusive, and that have coordinates that lie within the specified
window (including its borders) at its present placement. If the server does not support motion his-
tory, if the start time is later than the stop time, or if the start time is in the future, no events are
returned; XGetMotionEvents returns NULL. If the stop time is in the future, it is equivalent to
specifying CurrentTime. The return type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y;
} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the

241

coordinates of the pointer and are reported relative to the origin of the specified window. To free
the data returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

11.8. Handling Protocol Errors

Xlib provides functions that you can use to enable or disable synchronization and to use the
default error handlers.

11.8.1. Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to behave syn-
chronously so that errors are reported as they occur. The following function lets you disable or
enable synchronous behavior. Note that graphics may occur 30 or more times more slowly when
synchronization is enabled. On POSIX-conformant systems, there is also a global variable _Xde-
bug that, if set to nonzero before starting a program under a debugger, will force synchronous
library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is known
as an after function. XSetAfterFunction sets which function is to be called.

int (*XSetAfterFunction(display, procedure))()
Display *display;
int (*procedure)();
display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

The specified procedure is called with only a display pointer. XSetAfterFunction returns the
previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize (display, onoff))()
Display *display;

Bool onoff;
display Specifies the connection to the X server.
onoff Specifies a Boolean value that indicates whether to enable or disable synchro-
nization.

The XSynchronize function returns the previous after function. If onoff is True, XSynchronize
turns on synchronous behavior. If onoff is False, XSynchronize turns off synchronous behavior.

11.8.2. Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal conditions (for example,
the connection to a display server dying because a machine crashed) and one to handle protocol
errors from the X server. These error handlers can be changed to user-supplied routines if you
prefer your own error handling and can be changed as often as you like. If either function is
passed a NULL pointer, it will reinvoke the default handler. The action of the default handlers is
to print an explanatory message and exit.

242

To set the error handler, use XSetErrorHandler.

int (*XSetErrorHandler (handler))()
int (* handler)(Display *, XErrorEvent *)

handler Specifies the program’s supplied error handler.

Xlib generally calls the program’s supplied error handler whenever an error is received. It is not
called on BadName errors from OpenFont, LookupColor, or AllocNamedColor protocol
requests or on BadFont errors from a QueryFont protocol request. These errors generally are
reflected back to the program through the procedural interface. Because this condition is not
assumed to be fatal, it is acceptable for your error handler to return; the returned value is ignored.
However, the error handler should not call any functions (directly or indirectly) on the display that
will generate protocol requests or that will look for input events. The previous error handler is
returned.

The XErrorEvent structure contains:

typedef struct {

int type;

Display *display; /* Display the event was read from */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error code of failed request */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */
XID resourceid; /* resource id */

} XErrorEvent;

The serial member is the number of requests, starting from one, sent over the network connection
since it was opened. It is the number that was the value of NextRequest immediately before the
failing call was made. The request_code member is a protocol request of the procedure that
failed, as defined in <X11/Xproto.h>. The following error codes can be returned by the func-
tions described in this chapter:

Error Code Description

BadAccess A client attempts to grab a key/button combination already
grabbed by another client.

A client attempts to free a colormap entry that it had not already
allocated or to free an entry in a colormap that was created with
all entries writable.

A client attempts to store into a read-only or unallocated col-
ormap entry.

A client attempts to modify the access control list from other
than the local (or otherwise authorized) host.

A client attempts to select an event type that another client has
already selected.

243

Error Code

Description

BadAlloc

BadAtom
BadColor

BadCursor
BadDrawable

BadFont
BadGC

BadIDChoice

BadImplementation

BadLength

BadMatch

BadName
BadPixmap
BadRequest

The server fails to allocate the requested resource. Note that the
explicit listing of BadAlloc errors in requests only covers alloca-
tion errors at a very coarse level and is not intended to (nor can it
in practice hope to) cover all cases of a server running out of
allocation space in the middle of service. The semantics when a
server runs out of allocation space are left unspecified, but a
server may generate a BadAlloc error on any request for this
reason, and clients should be prepared to receive such errors and
handle or discard them.

A value for an atom argument does not name a defined atom.

A value for a colormap argument does not name a defined col-
ormap.

A value for a cursor argument does not name a defined cursor.
A value for a drawable argument does not name a defined win-
dow or pixmap.

A value for a font argument does not name a defined font (or, in
some cases, GContext).

A value for a GContext argument does not name a defined
GContext.

The value chosen for a resource identifier either is not included
in the range assigned to the client or is already in use. Under
normal circumstances, this cannot occur and should be consid-
ered a server or Xlib error.

The server does not implement some aspect of the request. A
server that generates this error for a core request is deficient. As
such, this error is not listed for any of the requests, but clients
should be prepared to receive such errors and handle or discard
them.

The length of a request is shorter or longer than that required to
contain the arguments. This is an internal Xlib or server error.

The length of a request exceeds the maximum length accepted by
the server.

In a graphics request, the root and depth of the graphics context
do not match those of the drawable.

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type and
range, but it fails to match in some other way required by the
request.

An InputOnly window lacks this attribute.
A font or color of the specified name does not exist.
A value for a pixmap argument does not name a defined pixmap.

The major or minor opcode does not specify a valid request.
This usually is an Xlib or server error.

244

Error Code Description

BadValue Some numeric value falls outside of the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is accepted.
Any argument defined as a set of alternatives typically can gener-
ate this error (due to the encoding).

BadWindow A value for a window argument does not name a defined win-
dow.

Note

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC, Bad-
Pixmap, and BadWindow errors are also used when the argument type is extended
by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErrorText(display, code, buffer_return, length)
Display *display;

int code;
char *buffer_return;
int length;
display Specifies the connection to the X server.
code Specifies the error code for which you want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified error code
into the specified buffer. The returned text is in the encoding of the current locale. It is recom-
mended that you use this function to obtain an error description because extensions to Xlib may
define their own error codes and error strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

245

XGetErrorDatabaseText(display, name, message, default_string, buffer_return, length)
Display *display;
char *name, *message;
char *default_string;
char *buffer_return;

int length;
display Specifies the connection to the X server.
name Specifies the name of the application.
message Specifies the type of the error message.

default_string Specifies the default error message if none is found in the database.
buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a null-terminated message (or the default mes-
sage) from the error message database. Xlib uses this function internally to look up its error mes-
sages. The text in the default_string argument is assumed to be in the encoding of the current
locale, and the text stored in the buffer_return argument is in the encoding of the current locale.

The name argument should generally be the name of your application. The message argument
should indicate which type of error message you want. If the name and message are not in the
Host Portable Character Encoding, the result is implementation-dependent. Xlib uses three pre-
defined “‘application names’ to report errors. In these names, uppercase and lowercase matter.

XProtoError ~ The protocol error number is used as a string for the message argument.
XlibMessage These are the message strings that are used internally by the library.

XRequest For a core protocol request, the major request protocol number is used for the
message argument. For an extension request, the extension name (as given by
InitExtension) followed by a period (.) and the minor request protocol number is
used for the message argument. If no string is found in the error database, the
default_string is returned to the buffer argument.

To report an error to the user when the requested display does not exist, use XDisplayName.

char *XDisplayName (string)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display that XOpenDisplay would attempt
to use. If a NULL string is specified, XDisplayName looks in the environment for the display
and returns the display name that XOpenDisplay would attempt to use. This makes it easier to

report to the user precisely which display the program attempted to open when the initial connec-
tion attempt failed.

To handle fatal I/O errors, use XSetIOErrorHandler.

246

int (*XSetlOErrorHandler (handler))()
int (* handler)(Display *);

handler Specifies the program’s supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the program’s supplied
error handler if any sort of system call error occurs (for example, the connection to the server was
lost). This is assumed to be a fatal condition, and the called routine should not return. If the I/O
error handler does return, the client process exits.

Note that the previous error handler is returned.

247

Chapter 12

Input Device Functions

You can use the Xlib input device functions to:
. Grab the pointer and individual buttons on the pointer

. Grab the keyboard and individual keys on the keyboard

. Resume event processing
. Move the pointer
. Set the input focus

. Manipulate the keyboard and pointer settings
. Manipulate the keyboard encoding

12.1. Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usually is a
mouse. Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server provides
sufficient control over event delivery to allow window managers to support mouse ahead and vari-
ous other styles of user interface. Many of these user interfaces depend on synchronous delivery
of events. The delivery of pointer and keyboard events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing client
rather than the normal client who would have received the event. If the keyboard or pointer is in
asynchronous mode, further mouse and keyboard events will continue to be processed. If the
keyboard or pointer is in synchronous mode, no further events are processed until the grabbing
client allows them (see XAllowEvents). The keyboard or pointer is considered frozen during
this interval. The event that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single client
grabs the keyboard and/or pointer explicitly (see XGrabPointer and XGrabKeyboard). A pas-
sive grab occurs when clients grab a particular keyboard key or pointer button in a window, and
the grab will activate when the key or button is actually pressed. Passive grabs are convenient for
implementing reliable pop-up menus. For example, you can guarantee that the pop-up is mapped
before the up pointer button event occurs by grabbing a button requesting synchronous behavior.
The down event will trigger the grab and freeze further processing of pointer events until you
have the chance to map the pop-up window. You can then allow further event processing. The up
event will then be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The X server includes a
timestamp in various events. One special time, called CurrentTime, represents the current
server time. The X server maintains the time when the input focus was last changed, when the
keyboard was last grabbed, when the pointer was last grabbed, or when a selection was last
changed. Your application may be slow reacting to an event. You often need some way to spec-
ify that your request should not occur if another application has in the meanwhile taken control of

248

the keyboard, pointer, or selection. By providing the timestamp from the event in the request, you
can arrange that the operation not take effect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server reset. Timestamp values wrap around (after about 49.7 days). The server, given its current
time is represented by timestamp T, always interprets timestamps from clients by treating half of
the timestamp space as being later in time than T. One timestamp value, named CurrentTime, is
never generated by the server. This value is reserved for use in requests to represent the current
server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer event
mask bits are: ButtonPressMask, ButtonReleaseMask, EnterWindowMask, LeaveWindow-
Mask, PointerMotionMask, PointerMotionHintMask, Button1MotionMask, But-
ton2MotionMask, Button3MotionMask, Button4dMotionMask, ButtonSMotionMask, But-
tonMotionMask, and KeyMapStateMask. For other functions in this section, you pass
keymask bits. The valid keymask bits are: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer (display, grab_window, owner_events, event_mask, pointer_mode,
keyboard_mode, confine_to, cursor, time)
Display *display;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;
Cursor cursor;
Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by the
event mask.

event_mask Specifies which pointer events are reported to the client. The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can pass GrabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass GrabModeSync
or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.
cursor Specifies the cursor that is to be displayed during the grab or None.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns GrabSuccess if the

249

grab was successful. Further pointer events are reported only to the grabbing client. XGrab-
Pointer overrides any active pointer grab by this client. If owner_events is False, all generated
pointer events are reported with respect to grab_window and are reported only if selected by
event_mask. If owner_events is True and if a generated pointer event would normally be
reported to this client, it is reported as usual. Otherwise, the event is reported with respect to the
grab_window and is reported only if selected by event_mask. For either value of owner_events,
unreported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual. If the
pointer is currently frozen by this client, the processing of events for the pointer is resumed. If
the pointer_mode is GrabModeSync, the state of the pointer, as seen by client applications,
appears to freeze, and the X server generates no further pointer events until the grabbing client
calls XAllowEvents or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen; they are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected by acti-
vation of the grab. If the keyboard_mode is GrabModeSync, the state of the keyboard, as seen
by client applications, appears to freeze, and the X server generates no further keyboard events
until the grabbing client calls XAllowEvents or until the pointer grab is released. Actual
keyboard changes are not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If None is
specified, the normal cursor for that window is displayed when the pointer is in grab_window or
one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that window. The
confine_to window need have no relationship to the grab_window. If the pointer is not initially in
the confine_to window, it is warped automatically to the closest edge just before the grab activates
and enter/leave events are generated as usual. If the confine_to window is subsequently reconfig-

ured, the pointer is warped automatically, as necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applications take a
long time to respond or if there are long network delays. Consider a situation where you have
two applications, both of which normally grab the pointer when clicked on. If both applications
specify the timestamp from the event, the second application may wake up faster and successfully
grab the pointer before the first application. The first application then will get an indication that
the other application grabbed the pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to window lies
completely outside the boundaries of the root window, XGrabPointer fails and returns Grab-
NotViewable. If the pointer is actively grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an active grab of another client, it fails and returns
GrabFrozen. If the specified time is earlier than the last-pointer-grab time or later than the cur-
rent X server time, it fails and returns GrabInvalidTime. Otherwise, the last-pointer-grab time
is set to the specified time (CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer .

250

XUngrabPointer (display, time)
Display *display;

Time time;
display Specifies the connection to the X server.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client has
actively grabbed the pointer from XGrabPointer, XGrabButton, or from a normal button press.
XUngrabPointer does not release the pointer if the specified time is earlier than the last-pointer-
grab time or is later than the current X server time. It also generates EnterNotify and LeaveNo-
tify events. The X server performs an UngrabPointer request automatically if the event window
or confine_to window for an active pointer grab becomes not viewable or if window reconfigura-
tion causes the confine_to window to lie completely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab (display, event_mask, cursor, time)
Display *display;
unsigned int event_mask;
Cursor cursor;
Time time;

display Specifies the connection to the X server.

event_mask Specifies which pointer events are reported to the client. The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic parameters if the
pointer is actively grabbed by the client and if the specified time is no earlier than the last-pointer-
grab time and no later than the current X server time. This function has no effect on the passive
parameters of an XGrabButton. The interpretation of event_mask and cursor is the same as
described in XGrabPointer.

X ChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

251

XGrabButton (display, button, modifiers, grab_window, owner_events, event_mask,
pointer_mode , keyboard_mode, confine_to, cursor)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window:;
Bool owner_events;
unsigned int event_mask;
int pointer_mode , keyboard_mode;
Window confine_to;
Cursor cursor;

display Specifies the connection to the X server.
button Specifies the pointer button that is to be grabbed or AnyButton.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise inclusive

OR of the valid keymask bits.
grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by the
event mask.

event_mask Specifies which pointer events are reported to the client. The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can pass GrabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass GrabModeSync
or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is actively
grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at which the button
was pressed (as transmitted in the ButtonPress event), and the ButtonPress event is reported if
all of the following conditions are true:

. The pointer is not grabbed, and the specified button is logically pressed when the specified
modifier keys are logically down, and no other buttons or modifier keys are logically down.

. The grab_window contains the pointer.
. The confine_to window (if any) is viewable.
. A passive grab on the same button/key combination does not exist on any ancestor of

grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active grab is termi-
nated automatically when the logical state of the pointer has all buttons released (independent of
the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

252

This request overrides all previous grabs by the same client on the same button/key combinations
on the same window. A modifiers of AnyModifier is equivalent to issuing the grab request for
all possible modifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned KeyCodes. A button of AnyButton is equiv-
alent to issuing the request for all possible buttons. Otherwise, it is not required that the specified
button currently be assigned to a physical button.

If some other client has already issued an XGrabButton with the same button/key combination
on the same window, a BadAccess error results. When using AnyMaodifier or AnyButton, the
request fails completely, and a BadAccess error results (no grabs are established) if there is a
conflicting grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.
To ungrab a pointer button, use XUngrabButton.

XUngrabButton (display, button, modifiers, grab_window)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window:;

display Specifies the connection to the X server.
button Specifies the pointer button that is to be released or AnyButton.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise inclusive

OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the specified win-
dow if it was grabbed by this client. A modifiers of AnyMaodifier is equivalent to issuing the
ungrab request for all possible modifier combinations, including the combination of no modifiers.
A button of AnyButton is equivalent to issuing the request for all possible buttons. XUngrab-
Button has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

12.2. Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow events.

For many functions in this section, you pass keymask bits. The valid keymask bits are: Shift-
Mask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
ModSMask.

To grab the keyboard, use XGrabKeyboard.

253

int XGrabKeyboard(display, grab_window, owner_events, pointer_mode , keyboard_mode , time)
Display *display;
Window grab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard events are to be
reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass GrabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass GrabModeSync
or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates FocusIn
and FocusOut events. Further key events are reported only to the grabbing client. XGrabKey-
board overrides any active keyboard grab by this client. If owner_events is False, all generated
key events are reported with respect to grab_window. If owner_events is True and if a generated
key event would normally be reported to this client, it is reported normally; otherwise, the event is
reported with respect to the grab_window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event processing continues as
usual. If the keyboard is currently frozen by this client, then processing of keyboard events is
resumed. If the keyboard_mode argument is GrabModeSync, the state of the keyboard (as seen
by client applications) appears to freeze, and the X server generates no further keyboard events
until the grabbing client issues a releasing XAllowEvents call or until the keyboard grab is
released. Actual keyboard changes are not lost while the keyboard is frozen; they are simply
queued in the server for later processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activation of the
grab. If pointer_mode is GrabModeSync, the state of the pointer (as seen by client applications)
appears to freeze, and the X server generates no further pointer events until the grabbing client
issues a releasing XAllowEvents call or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen; they are simply queued in the server for later pro-
cessing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and returns
AlreadyGrabbed. If grab_window is not viewable, it fails and returns GrabNotViewable. If
the keyboard is frozen by an active grab of another client, it fails and returns GrabFrozen. If the
specified time is earlier than the last-keyboard-grab time or later than the current X server time, it
fails and returns GrabInvalidTime. Otherwise, the last-keyboard-grab time is set to the speci-
fied time (CurrentTime is replaced by the current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

254

XUngrabKeyboard(display, time)
Display *display;

Time time;
display Specifies the connection to the X server.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this client has
it actively grabbed from either XGrabKeyboard or XGrabKey. XUngrabKeyboard does not
release the keyboard and any queued events if the specified time is earlier than the last-keyboard-
grab time or is later than the current X server time. It also generates FocusIn and FocusQut
events. The X server automatically performs an UngrabKeyboard request if the event window
for an active keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey (display, keycode , modifiers, grab_window, owner_events, pointer_mode,
keyboard_mode)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window:;
Bool owner_events;
int pointer_mode, keyboard_mode

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise inclusive

OR of the valid keymask bits.
grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard events are to be
reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass GrabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass GrabModeSync
or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the keyboard
is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is set to the time at
which the key was pressed (as transmitted in the KeyPress event), and the KeyPress event is
reported if all of the following conditions are true:

. The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other modi-
fier keys are logically down.

. Either the grab_window is an ancestor of (or is) the focus window, or the grab_window is a
descendant of the focus window and contains the pointer.

255

. A passive grab on the same key combination does not exist on any ancestor of grab_win-
dow.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active grab is ter-
minated automatically when the logical state of the keyboard has the specified key released (inde-
pendent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all possible modi-
fier combinations (including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned KeyCodes. A keycode argument of AnyKey is equivalent to
issuing the request for all possible KeyCodes. Otherwise, the specified keycode must be in the
range specified by min_keycode and max_keycode in the connection setup, or a BadValue error
results.

If some other client has issued a XGrabKey with the same key combination on the same win-
dow, a BadAccess error results. When using AnyModifier or AnyKey, the request fails com-
pletely, and a BadAccess error results (no grabs are established) if there is a conflicting grab for
any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.
To ungrab a key, use XUngrabKey .

XUngrabKey (display, keycode , modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window:;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise inclusive

OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it was
grabbed by this client. It has no effect on an active grab. A modifiers of AnyModifier is equiv-
alent to issuing the request for all possible modifier combinations (including the combination of
no modifiers). A keycode argument of AnyKey is equivalent to issuing the request for all possi-
ble key codes.

XUngrabKey can generate BadValue and BadWindow errors.

12.3. Resuming Event Processing

The previous sections discussed grab mechanisms with which processing of events by the server
can be temporarily suspended. This section describes the mechanism for resuming event process-
ing.

To allow further events to be processed when the device has been frozen, use XAllowEvents.

256

XAllowEvents(display, event_mode, time)

Display *display;
int event_mode;

Time time;

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can pass AsyncPointer, SyncPointer, AsyncK-
eyboard, SyncKeyboard, ReplayPointer, ReplayKeyboard, AsyncBoth, or
SyncBoth.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a device to
freeze. It has no effect if the specified time is earlier than the last-grab time of the most recent
active grab for the client or if the specified time is later than the current X server time. Depending
on the event_mode argument, the following occurs:

AsyncPointer

SyncPointer

ReplayPointer

AsyncKeyboard

If the pointer is frozen by the client, pointer event processing continues
as usual. If the pointer is frozen twice by the client on behalf of two sep-
arate grabs, AsyncPointer thaws for both. AsyncPointer has no effect
if the pointer is not frozen by the client, but the pointer need not be
grabbed by the client.

If the pointer is frozen and actively grabbed by the client, pointer event
processing continues as usual until the next ButtonPress or ButtonRe-
lease event is reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes the pointer grab
to be released, the pointer does not freeze. SyncPointer has no effect if
the pointer is not frozen by the client or if the pointer is not grabbed by
the client.

If the pointer is actively grabbed by the client and is frozen as the result
of an event having been sent to the client (either from the activation of an
XGrabButton or from a previous XAllowEvents with mode Sync-
Pointer but not from an XGrabPointer), the pointer grab is released
and that event is completely reprocessed. This time, however, the func-
tion ignores any passive grabs at or above (toward the root of) the
grab_window of the grab just released. The request has no effect if the
pointer is not grabbed by the client or if the pointer is not frozen as the
result of an event.

If the keyboard is frozen by the client, keyboard event processing contin-
ues as usual. If the keyboard is frozen twice by the client on behalf of
two separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard
has no effect if the keyboard is not frozen by the client, but the keyboard
need not be grabbed by the client.

257

SyncKeyboard If the keyboard is frozen and actively grabbed by the client, keyboard
event processing continues as usual until the next KeyPress or KeyRe-
lease event is reported to the client. At this time, the keyboard again
appears to freeze. However, if the reported event causes the keyboard
grab to be released, the keyboard does not freeze. SyncKeyboard has
no effect if the keyboard is not frozen by the client or if the keyboard is
not grabbed by the client.

ReplayKeyboard If the keyboard is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the acti-
vation of an XGrabKey or from a previous XAllowEvents with mode
SyncKeyboard but not from an XGrabKeyboard), the keyboard grab
is released and that event is completely reprocessed. This time, however,
the function ignores any passive grabs at or above (toward the root of)
the grab_window of the grab just released. The request has no effect if
the keyboard is not grabbed by the client or if the keyboard is not frozen
as the result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event processing
for both devices continues as usual until the next ButtonPress, Button-
Release, KeyPress, or KeyRelease event is reported to the client for a
grabbed device (button event for the pointer, key event for the keyboard),
at which time the devices again appear to freeze. However, if the
reported event causes the grab to be released, then the devices do not
freeze (but if the other device is still grabbed, then a subsequent event for
it will still cause both devices to freeze). SyncBoth has no effect unless
both pointer and keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two separate grabs,
SyncBoth thaws for both (but a subsequent freeze for SyncBoth will
only freeze each device once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event processing
for both devices continues as usual. If a device is frozen twice by the
client on behalf of two separate grabs, AsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer and keyboard are frozen by
the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing of keyboard
events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect on the process-
ing of pointer events. It is possible for both a pointer grab and a keyboard grab (by the same or
different clients) to be active simultaneously. If a device is frozen on behalf of either grab, no
event processing is performed for the device. It is possible for a single device to be frozen
because of both grabs. In this case, the freeze must be released on behalf of both grabs before
events can again be processed. If a device is frozen twice by a single client, then a single Allow-
Events releases both.

XAllowEvents can generate a BadValue error.

12.4. Moving the Pointer

Although mo