
5/15/96

CDE/Motif PST

X PRINT SERVICE FUNCTIONAL
SPECIFICATION

Revision 1.0

Functional specification

3
CDE/Motif PST

CDEnext

X Print Service Overview 7
X Print Service Overview 7
The Developer’s/Integrator’s View 11
The End User’s View 13
The Printer Vendor’s View 14
The System Administrator’s View 14
Functional Specification Chapters 15
Recommended End-User Documentation 15

X Print Service Extension Library 17
Overview 17
XpCreateContext 18
XpSetContext 20
XpGetContext 22
XpDestroyContext 22
XpGetScreenOfContext 23
XpGetPageDimensions 24
XpStartJob - XpEndJob - XpCancelJob 26
XpStartDoc - XpEndDoc - XpCancelDoc 28
XpPutDocumentData 30
XpGetDocumentData 32
XpStartPage - XpEndPage - XpCancelPage 34
XpSelectInput 37
XpInputSelected 38
XpGetAttributes 39
XpGetOneAttribute 40
XpSetAttributes 42
XpGetPrinterList 44
XpFreePrinterList 46
XpRehashPrinterList 46
XpQueryVersion 47
XpQueryExtension 48
XpQueryScreens 50
XpGetPdmStartParams 51
XpGetAuthParams 53
XpSendAuth 55
XpSendOneTicket 56
XpSetLocaleHinter & XpGetLocaleHinter 57

PDM Selection Protocol 60
Overview 60
Setup of the Protocol 60

Functional specification

4
CDE/Motif PST

CD
En

ex
t

PDM_START Selection Target 61
PDM_MBOX Selection Target 63
TARGETS Selection Target 65
MULTIPLE Selection Target 65
TIMESTAMP Selection Target 65

Xp Print Service Extension Events 69
Issues 69
Overview 69
Xp Print Event Summary 69
Xp Print Event Details & Structures 70
Receiving Xp Print Events 71

Dt Print Dialog Manager 73
 Overview 73
Dt Print Dialog Manager Daemon - dtpdmd 74
 Dt Print Dialog Manager 77

X Print Configuration Databases 83
Configuration Files Overview 83
Configuration Directories 84
Xprinters File 88
Printer Model Attributes File 90
Printer Attributes File 92
Job Attributes File 94
Document Attributes File 95
ddx Driver Configuration Files 96

X Print Service Attributes 97
Overview 97
Attribute Value Defaulting And Validation 99
Server Attribute Definitions 100
Printer Attribute Definitions 102
Job Attribute Definitions 110
Document Attribute Definitions 112
Page Attribute Definitions 115
See Also 116

Fonts 117
Overview 117
Systems Administration Considerations 118

Functional specification

5
CDE/Motif PST

CDEnext

X Print Driver Interface 119
Xp Print Driver Overview 119
X Print Driver Initialization 119
XpRegisterInitFunc 120
Attribute Concepts 121
Attribute Store and Spooler Interface Functions 122
XpInitAttributes 122
XpGetOneAttribute 123
XpGetAttributes 124
XpGetMediumDimensions 124
XpGetReproductionArea 125
XpAugmentAttributes 126
XpSetAttributes 127
XpSubmitJob 127
XpFreeAttributes 128
Xp Extension Functions 129
InitContext 130
DestroyContext 130
StartJob 131
EndJob 132
StartDoc 133
EndDoc 133
StartPage 134
EndPage 135
PutDocumentData 136
GetDocumentData 137
GetAttributes 138
GetOneAttribute 138
AugmentAttributes 139
SetAttributes 140
Xp Utility and Convenience Functions 141
XpSendData 141
XpAllocateContextPrivateIndex 142
XpAllocateContextPrivate 142

X Print Extension Protocol 145
Protocol Overview 145
Request Protocol Specifications 145
Event Protocol Specifications 161
Error Protocol Specifications 162

Application Print Dialogs 165

Functional specification

6
CDE/Motif PST

CD
En

ex
t

Introduction 165
DtPrintSetupBox 166
DtCreatePrintSetupBox 178
DtCreatePrintSetupDialog 179
DtPrintFillSetupData 180
DtPrintCopySetupData 183
DtPrintFreeSetupData 184
DtPrintResetConnection 185
DtPrintSetupProc 187
DtPrinterSelectionDialog 189

Glossary 191
Fundamental DT Print Service Terms 191
Other non DT Print Service Specific Terms 191

7
CDE/Motif PST

CDEnext

X PRINT SERVICE OVERVIEW

This Functional Specification describes, from the end user’s and application developer’s perspective, all the public
components, APIs and GUIs that make up the X Print Service. The X Print Service enables X rendering to non-
display devices such as printers and fax machines. For CDEnext, support for PCL and Postscript printers will be
developed, and the architecture remains extensible to allow support for other non-display devices.

A companion book, The X Print Service Design Specification, serves as the blueprint document for the X Print
Service, and addresses architecture, design opportunities and decisions, and other aspects of the X Print Service.

1.1 X Print Service Overview

The X Print Service from CDEnext is an architectural-level solution and sample implementation which allows X
imaging to non-display devices such as printers. It is called the X “Print” Service because the primarily
application of the technology will be towards printing, but the technology will in fact be applicable to a range of
non-display devices. To date, print rendering technologies have evolved separately from display rendering
technologies. The thrust of the X Print Service is to converge the evolution of these print and display technologies.

For example, today’s X environment provides a number of APIs and technologies for rendering to a display,
including:

u Xlib
u PEXlib
u X Imaging Extension
u OSF/Motif Toolkit
u Scalable Fonts

By retaining and supplementing these (and many more) standard APIs with one small print-specific API:

u libXp

The X Print Service will allow an existing X application to render against a printer in addition to traditional display
devices (note: the CDEnext sample implementation will not initially support all the X APIs).

1.1.1 X Print Service Core Components

The X Print Service is made up of the following core components (proposed for standardization via the X
Consortium):

u X Print Extension - a new X-Server Extension and corresponding X Print Extension Protocol.
u libXp - the X Print Extension Library which provides an API for applications to the X Print Extension

Protocol.

Functional specification

8
CDE/Motif PST

CD
En

ex
t

u X Print “ddx” Drivers - ddx-level drivers for the X-Server that generate page description languages such as
PCL and Postscript.

u Configuration Files and Defaults - configuration files that describe the capabilities of several printer
models, and other X Print Server configuration files.

The X Print Service is enhanced by the addition of the following core components (proposed for standardization via
CDEnext):

u libDtPrint - a library of print-specific GUIs tuned to several reference page-description-languages and
printer models.

u dtpdm - also known as the Dt Print Dialog Manager, a daemon-like process that provides secondary printer-
specific GUIs that handle specific printer and spooler setup tasks.

The following components are outside the scope of this project, and are not core component deliverables, but an
attempt may be made to deliver them as “contrib” components:

u A top-level application-embeddable dialog that handles the tasks of printer selection and generic printer
setup (for example, number of copies), and offers hooks into the Print Dialog Manager.

u Installation and configuration scripts for specific vendor platforms.
u Auto-hosting Dt Print Dialog Manager protocol. Rather than depending on pre-configured security, an

extension to the PDM Selection Protocol would allow on-the-fly “auto display-connection authorization”
so that the PDM can display on the users Video X-Server.

u Some form of advanced color correction technology.

As the X Print Service was developed, keywords and concepts were borrowed from the abstract standard ISO
10175, and the subsetted standard and implementation represented by POSIX 1387.4, and the yet further
subsetted implementation represented by Palladium. The X Print Service does not attempt to duplicate the
functionality or APIs provided by any of these print subsystems, or by any other print subsystems such as System
V lp or BSD lp. The X Print Service does attempt to “play with” these print subsystems however, in a least-
common-denominator fashion, and is architecturally open enough to allow tighter binding to a specific print
subsystem in the future.

1.1.2 X Print Service Key Concepts

The center of the X Print Service is the X Print Server. To an X application, it should look and behave like a regular
X-Server with the following enhancements.

Functional specification

9
CDE/Motif PST

CDEnext

Figure 1-1.X Print Service Key Concepts Diagram

When the X Print Server starts, it may read a configuration file for instructions on which print ddx drivers to load,
and which printer names to support. It may also read some “ddx dependent configuration files”.

At this point, the X Print Server knows which printers to support, and has access to “printer model configuration
files” that descibe the capabilities of the printer models. Parallel to the printer model configuration files are some
“printer attribute configuration files” that can be modified if per-printer customization is desired.

When an application wishes to print, it can make a display connection to the X Print Server and ask to see the list of
available printers via XpGetPrinterList. Once the application has selected a printer, the application can
create and set a “Print Context” using XpCreateContext and XpSetContext. The “Print Context” is a
critical concept, as it represents the embodiment of the printer selected - it is initialized by the X Print Server at
XpCreateContext time, to contain the default capabilities of the printer, to contain the array of capabilities of
the printer, to maintain the state of settings on the printer, to maintain the state of rendering against the printer, and
to maintain the rendered output. The Print Context affects how the ddx driver generates its page description
language (PDL), and how the PDL is submitted to a spooler. The Print Context may also affect fonts and other
elements in the dix layer of the X Print Server. The most outwardly visible aspect of a Print Context are the
“attribute pools” contained within, attributes that express and control: server, printer, job, document and page
options. These attribute pools can be accessed and changed using XpGetAttributes and XpSetAttributes.

X Application

DIX + OS +

Print DDX

Print Extension

Print Contexts

Fonts + Other

Print Spooler

Print Dialog Manager

XpGetPrinterList
XpCreateContext
XpStartJob
...x rendering...
XpEndJob

XpSetContext
XpGetAttributes
XpSetAttributes

XpNotifyPdm

Printers config file (config needed)
Printer model files (provided by printer vendors)
Printer attribute files (some config needed)
ddx config files (provided by ddx vendors)

Job, Document & Page attributes
Server & Printer attributes

Functional specification

10
CDE/Motif PST

CD
En

ex
t

Because Print Contexts can be shared among processes, applications can enlist the help of a secondary process to
manipulate print options in the Print Context rather than taking on the task directly. For CDEnext, the call
XpGetPdmStartParams is being provided to enlist the help of the Dt Print Dialog Manager. By externalizing
this task, new configuration dialogs and capabilities can be added without having to modify individual applications.

In most cases, the dialogs displayed by a Print Dialog Manager will be tuned to the capabilities of the
corresponding ddx driver. It is possible to have multiple Print Dialog Managers, each one responsible for handling
setup tasks for a different PDL.

Once the application has, with or without a Print Dialog Manager’s help, set options within the Print Context, the
application can make calls such as XpStartJob to delineate jobs, documents and pages within a sequence of
normal X calls. Conceptually, a “job” is a collection of “documents”, where each document is in turn a collection
of “pages”. When XpEndJob is called, the resuling PDL is sent to a print spooler, or can be retrieved by the
application.

At this point, the end user should have on paper (or other non-display media) what was once only available on the
display.

Functional specification

11
CDE/Motif PST

CDEnext

1.2 The Developer’s/Integrator’s View

The developer or integrator is the person who will modify an X application to use the X Print Service.

From the application’s perspective, it can attach to one of two nearly identical X Servers (see figure points A and B,
following diagram). The primary difference is that when connected to the X Print Server, additional calls can be
made to delineate print “jobs”, “documents” and “pages”, and to create and modify a Print Context.

Conceptually, a “job” is a collection of “documents”, where each document is in turn a collection of “pages”.
Depending on the print facilities underlying the X Print Server (for example, a print management system
conforming to POSIX 1387.4), these delineations may be translated into tangible functionality.

Figure 1-1. Developer’s/Integrator’s View

X Video Server X Print Server

X Application

Dt Print Dialog Manager

Application
Display Window

Application
Print Window

Coordinated
Print Setup
GUIs

Printer Spooler Subsystem

A B

E

C

D

Functional specification

12
CDE/Motif PST

CD
En

ex
t

A simple X application supplemented with some of the libXp routines might look like:

/*
 * Connect to the X Print Server
 */
pdpy = XOpenDisplay(printServerName);
/*
 * See if the printer “myLaser” is available
 */
plist = XpGetPrinterList(pdpy, “myLaser”, &plistCnt);

/*
 * Initialize a print context representing “mylaser”
 */
pcontext = XpCreateContext(pdpy, plist[0].name);
XpFreePrinterList(plist);
/*
 * Possibly modify attributes in the print context
 */
attrPool = XpGetAttributes(pdpy, pcontext, poolType);
/* twiddle attributes */
XpSetAttributes(pdpy, pcontext, poolType, attrPool, XPAttrMerge);

/*
 * Set a print context, then start a print job against it
 */
XpSetContext(pdpy, pcontext);
XpStartJob(pdpy, XPSpool);
 /*
 * Generate the first page
 */
 pscreen = XpGetScreenOfContext(pdpy, pcontext);
 pwin = XCreateWindow(pdpy, pscreen,);

 XpStartPage(pdpy, pwin, True);
 usual_rendering_stuff(pdpy, pscreen, pwin);

 XpEndPage(pdpy);
 /*
 * Generate more pages, and so on...
 */

 XpStartPage(pdpy, pwin, True);
 more_rendering_stuff(pdpy, pscreen, pwin);

 XpEndPage(pdpy);
/*
 * End the print job - the final results are sent by the
 * X Print Server to the spooler subsystem
 */
XpEndJob(pdpy);
XpDestroyContext(pdpy, pcontext);

Functional specification

13
CDE/Motif PST

CDEnext

1.2.1 Advanced Utilization of the X Print Service

To aid an application in printer selection and generic setup, and as a hook into the functionality provided by the Dt
Print Dialog Manager, a primary or top-level X Print Service GUI (see figure point C) (contrib component) is
provided in the library:

u libDtPrint

From the top-level GUI, a printer selection mechanism is provided that helps the user select from the available
printers and their associated X Print Servers (e.g. toms_laser is available on phub.hp.com:6), though the X Print
Server specification (e.g phub.hp.com:6) is by default hidden so that the more traditional printer-name based
selection mechanism is presented. The top-level GUI also presents generic print setup options (e.g. copies) that can
be modified once a printer is selected. Application specific options can also be embedded in this dialog, giving the
appearance of a single unified print GUI.

For additional configuration, the Dt Print Dialog Manager (PDM) provides a second level of printer specific GUIs.
An application could take on the task of printer configuration, or can easily offload the task to the Dt PDM. The
executable is:

u dtpdm

The dtpdm is a standalone program that listens to and potentially serves applications attached to the X Print Server
(see figure point E), and can be highly configured to the capabilities of each printer attached the X Print Server.

To give the appearance that the Dt Print Dialog Manager GUIs are also an integral part of the application, they are
posted as transient windows (see figure point D) off the application. A typical service that the Dt Print Dialog
Manager can provide is page size selection and resolution selection (e.g. select 8-1/2”x11” paper at 300dpi).

Using libXp API calls to the X Print Server, the application and Dt Print Dialog Manager can exchange
configuration and option information. In some cases, the Dt Print Dialog Manager may work in close association
with the X Print Server DDX Driver (e.g. X to PCL) to deliver higher level functionality and potentially tighter
integration with the print spooler. For savy applications, it is possible to tie into the flow of configuration and option
information, and make runtime changes.

1.3 The End User’s View

The end user is the person who will be using an X application that uses the X Print Service.

From the user’s perspective in a typical application, printing is done through a series of dialogs, the first one being
initiated by selecting, for example, the pulldown menu <File><Print...>. The first dialog (contained in the
application itself), will allow the user to select generic print options - such as the number of copies - as well as
options specific to the application - such as page range. This initial print dialog will be comprised of two sections:
generic print options, and application specific print options. The generic print options portion of the dialog will look
and function identically across all applications. The application specific portion contains any options the application
wishes to present in addition to the generic options.

Functional specification

14
CDE/Motif PST

CD
En

ex
t

1.4 The Printer Vendor’s View

The printer vendor is the person or company that will wish to enhance the X Print Service so that it can support a
new model of printer or page description language. Enhancements may be as simple as providing new printer
model configuration files to providing a new ddx driver and corresponding Print Dialog manager.

The major points of enhancability within the X Print Service are:

u The ddx driver layer in the X Print Server. New ddx drivers can be added to support new page description
languages, provide more capabilities, or provide tighter integration with a given printer model.

u The Print Dialog Manager, either as a new executable or enhancement of an existing Print Dialog
Manager, to provide dialogs that expose highly printer specific options to the user and that communicates
through the Print Context attributes with the ddx driver.

u The printer model files. These files describe the capabilities and defaults of printers based by model.

1.5 The System Administrator’s View

The system administrator is the person who will configure and maintain the system processes and files associated
with the X Print Service. The X Print Service has built-in fallback defaults for nearly everything, but can be highly
configured to custom environments.

The X Print Service architecture has been designed so that support for specific page description languages and
spooler subsystems is isolated to the X Print Server’s ddx layer and a corresponding layer in the Dt Print Dialog
Manager. With this architecture, support for new page description languages and spooler subsystems can be
centrally added without having to reconfigure applications.

Support for specific types of printers and descriptions of the printer topology is also centralized in configuration
files maintained by the X Print Server. Using libXp, the configuration information can be retrieved by applications
and the Dt Print Dialog Manager.

The key areas of configuration and system administration are:

u X Print Service Startup - Deciding if a “per user session” or “global service” model of operation is desired.
For the per user session model, the session manager (e.g. dtsession) could, if extended, start the Print X
Server and Dt Print Page Manager. For the global session model, a script (or program) could be
responsible for starting the X Print Servers and Dt Print Dialog Managers. And depending on the system
administrator’s security demands, the script may also distribute authorization information (e.g. MIT-
MAGIC-COOKIE-1’s) so that the servers can be accessed by applications (users).

u X Print Server Startup - Configuration files to control which printers are available.
u Attribute files - A collection of files that define the full range of capabilities of the printers accessed by the

X Print Servers (e.g. 150, 300 and 600dpi supported), and default values (e.g. use 300dpi).
u Printer Model files - A collection of files typically supplied by a printer vendor to describe the capabilities

of specific printer models (e.g. Laserjet 4si). These files will generally not require reconfiguration, but may
be useful to reference when configuring files that describe the actual physical printers available (e.g.
eliminate the selection of duplex printing because the printer’s duplexer isn’t working).

Functional specification

15
CDE/Motif PST

CDEnext

1.6 Functional Specification Chapters

The following documentation is provided in this functional spec:

u X Print Service Extension Library
u X Print Service Extension Events
u Application Print Dialogs
u Dt Print Dialog Manager
u X Print Service System Administration
u X Print Service Configuration Databases
u Fonts
u X Print Service Attributes
u X Print Server Driver Interface
u X Print Extension Protocol
u Glossary

1.7 Recommended End-User Documentation

From this Functional Specification, it is expected that something akin to the following End-User Documentation
will be developed. The documentation will be in the form of a book, and in some cases, also available in true
man(1) man pages.

u X Print Service - Programmer’s Reference
u X Print Service Overview
u libXp Extension APIs + man pages
u libXp Extension Events and Errors
u libXp Extension Protocol
u libXp Print Dialog Manager X-Selection Protocol
u X Print Service Attributes + possibly man pages
u libDtPrint APIs and GUIs + man pages

u X Print Service - System Administrator’s Reference
u X Print Service Overview
u Configuring the X Print Server
u Configuring the Print Dialog Manager
u Configuring the X Print Service Attributes
u Starting the X Print Service
u Troubleshooting

Functional specification

16
CDE/Motif PST

CD
En

ex
t

u X Print Service - System User’s Reference
u X Print Service Overview
u User Model
u Desktop Integration
u Configuring a User’s Environment
u Configuring the X Print Service Attributes
u X Print Server + man page
u Dt Print Dialog Manager + man page

u X Print Service - Technical Reference
u CDEnext Raster-ddx capabilities/limitations in the X Print Server
u CDEnext PCL-ddx capabilities/limitations in the X Print Server
u CDEnext Postscript-ddx capabilities/limitations in the X Print Server
u CDEnext Print Dialog Manager capabilites/limitations
u Integrating New Print Drivers (ddx) into the Print X Server
u Integrating New Print Dialogs into an Application and Print Dialog Manager
u Understanding Fonts in the X Print Service
u Understanding Supported Rendering Operations

17
CDE/Motif PST

CDEnext

X PRINT SERVICE EXTENSION LIBRARY

2.1 Overview

2.1.1 PURPOSE

These functions provide access to the X Print Protocol Extension to X. In addition, some convenience functions
over the X Print Extension Protocol and Core X Protocols are provided that make it easier for an application
programmer to use the X Print Service.

2.1.2 DESCRIPTION

The X Print Service Extension Library concentrates on print job, document and page management. The calls are:

u XpCreateContext
u XpSetContext
u XpGetContext
u XpDestroyContext
u XpGetScreenOfContext
u XpGetPageDimensions
u XpStartJob
u XpEndJob
u XpCancelJob
u XpStartDoc
u XpEndDoc
u XpCancelDoc
u XpPutDocumentData
u XpGetDocumentData
u XpStartPage
u XpEndPage
u XpCancelPage
u XpSelectInput
u XpInputSelected
u XpGetAttributes
u XpSetAttributes
u XpGetOneAttribute

Functional specification

18
CDE/Motif PST

CD
En

ex
t

u XpGetPrinterList
u XpFreePrinterList - convenience routine
u XpRehashPrinterList
u XpQueryVersion
u XpQueryExtension - convenience routine
u XpQueryScreens
u XpGetPdmStartParams - convenience routine
u XpGetAuthParams - convenience routine
u XpSendAuth - convenience routine
u XpSendOneTicket - convenience routine
u XpSetLocaleHinter - convenience routine
u XpGetLocaleHinter - convenience routine

2.1.3 DEPENDENCIES

The X Print Service is an extension to the Core X protocol, and cannot be used outside of the X environment.

2.1.4 ISSUES

2.2 XpCreateContext

2.2.1 Short Description

Creates and initializes a new print context.

2.2.2 Long Description
NAME

XpCreateContext - create and initialize a print context

SYNOPSIS

#include <X11/extensions/Print.h>

XPContext XpCreateContext(
Display *display,
char *printer_name)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

printer_name The name of a printer on display. String encoded as COMPOUND_TEXT.

Functional specification

19
CDE/Motif PST

CDEnext

RETURN VALUE

context_id for the new print context.

DESCRIPTION

XpCreateContext creates a new print context that is initialized with the default printer attributes and
other information available for printer_name on display. A print context maintains the printer
name, print attributes, font capabilities, print (rendering) state and results, and is the object upon which the
Xp calls act.

If the library fails to generate a new print context id, a value of None is returned, otherwise a print context
id is always returned. If printer_name is invalid, a BadMatch will be generated later by the X Print
Server.

A call to XpGetPrinterList will return a valid list of values for printer_name. All printer name
values in the X Print Service are encoded as COMPOUND_TEXT (of which the ISO-8859-1 code-set is a
proper subset).

As soon as a print context is created, the print attributes within can be accessed and modified by calling
XpGetAttributes and XpSetAttributes, and the event selections within can be modified by
calling XpSelectInput and XpInputSelected. Other Xp calls that explicitly take a print context
id as a parameter will operate directly on that print context. All Xp and X calls without a print context id
parameter (for example, all rendering oriented calls like XpStartJob and XDrawLine) require that a
print context be set on the display connection (see XpSetContext). Failure to set a print context prior to
calling a print-context-dependent call will result in the generation of an XPBadContext error.

A context_id for the print context is returned by XpCreateContext, and can be used to set the
print context on display connections by calling XpSetContext. These display connections can be made
from the same client (process) that called XpCreateContext, and from other clients (processes) that
have acquired the context_id (for example, by inter-process communication). It is the responsibility of
the clients sharing a print context to coordinate their usage of XpDestroyContext so that in-use print
contexts are not prematurely destroyed.

The context_id remains valid for all clients until 1) the client creating the print context closes its
display connection, or 2) any client calls XpDestroyContext. The context_id can be kept
valid after the creating client’s display connection closes if XSetCloseDownMode is called on
display with RetainPermanent or RetainTemporary.

After creating a print context, and possibly modifying the XPDocAttr attribute document-format
using a value from the list of available formats shown in the XPPrinterAttr attribute document-
formats-supported, it is important to ask the X Print Server via XpGetScreenOfContext which
screen has been associated with the print context, and create all X-resources that will be used in the print
job on that screen. Failure to do so will result in undefined behavior. Once XpStartDoc is called, it is
guaranteed that the screen returned by XpGetScreenOfContext will not change, hence this become
the best time to call XpGetScreenOfContext and to start creating X-resources for the print job.

When XpCreateContext is called, the client’s locale (see XpSetLocaleHinter) is included in the
request as a “hint” to the X Print Server. If supported by the implementation, the X Print Server will use
the hint to initialize the attribute pools with any localized attribute values (for example, the human

Functional specification

20
CDE/Motif PST

CD
En

ex
t

readable XPPrinterAttr attribute “descriptor” may be available in several different languages, and the
hint will be used to select one). If the X Print Server cannot understand the hint, the X Print Server will
typically fall back to the locale it is running in.

DEPENDENCIES

Code Sets
XpCreateContext, XpGetAttributes, XpGetOneAttribute, XpSetAttributes,
XpGetPrinterList, XpGetPdmStartParams and XpNotifyPdm send and receive values
expressed as COMPOUND_TEXT - a format for multiple character set data, such as multi-lingual text.
Since the X Print Server may not be able to convert an arbitrary code set sent to its default character set,
calls that require the X Print Server to interpret the value may fail (for example, XpCreateContext is
called with a printer_name that is expressed in some unconvertable code set, so the X Print Server
cannot compare it to the list of printer names it knows).

ERRORS/WARNINGS

This function can generate one of the following errors:

BadMatch The specified printer_name does not exist on display. If the
context_id is per chance used in other calls prior to receiving this error,
those calls will fail with a XPBadContext.

SEE ALSO

XpSetContext, XpDestroyContext

2.3 XpSetContext

2.3.1 Short Description

Sets (i.e. associates) or unsets a print context with the specified display connection to the X Print Server.

2.3.2 Long Description
NAME

XpSetContext - sets or unsets a print context with a display connection

SYNOPSIS

#include <X11/extensions/Print.h>

void XpSetContext(
Display *display,
XPContext print_context)

Functional specification

21
CDE/Motif PST

CDEnext

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

print_context A pre-existing print context on the same X-Server.

RETURN VALUE

None.

DESCRIPTION

XpSetContext sets (i.e. associates) a print context previously created and initialized by
XpCreateContext with a display connection. All subsequent print operations that do not explicitly
take a print context id (for example, XpStartJob) on display will use and act upon the print context
set by this call, until the print context is unset or XpDestroyContext is called. The print context can be
set and used on subsequent jobs if not destroyed.

XpSetContext, if given None for print_context, will unset (disassociate) the print context
previously associated with display. If there was no previously associated print context, no action is
taken. The content of the formerly associated print context is not affected by this call, and other display
connections may continue to use the print context.

Since font capabilities can vary from printer to printer (for example, PCL vs Postscript), XpSetContext
may modify the list of available fonts (see XListFonts) on display, and the actual set of usable fonts
(for example, see XLoadFont). A unique mix of true X fonts (see fs(1)), soft printer fonts
masquerading as X fonts, and built-in printer fonts masquerading as X fonts may be available from within
a given print context; a client should not assume all fonts available outside a print context will be available
from within a print context. In other words, after calling XpSetContext, the global font path (see
XGetFontPath) shows all “potential” sources of fonts, XListFonts shows all valid font names, but
only XLoadFont will determine for sure if a specific instance of a font can be used.

Depending on the Print X-Server implementation, additional attributes may be available to help control
which fonts can and can not be seen when a print context is set. For example, it may be desirable to show
only the higher-performance built-in fonts when a print context is set, and ignore fonts that would have to
be downloaded into the printer prior to printing.

When the print context is unset or XpDestroyContext is called, the font capabilities on display
revert back to what they were previously.

See XpCreateContext for more details.

ERRORS/WARNINGS

This function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

SEE ALSO

XpCreateContext, XpDestroyContext

Functional specification

22
CDE/Motif PST

CD
En

ex
t

2.4 XpGetContext

2.4.1 Short Description

Get the current print context id for a display connection.

2.4.2 Long Description
NAME

XpGetContext - get the current print context id for a display connection

SYNOPSIS

#include <X11/extensions/Print.h>

XPContext XpGetContext(
Display *display)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

RETURN VALUE

id of the current print context. None if there is no current print context.

DESCRIPTION

XpGetContext returns the id of the current print context associated with display. If a print context
has not been set, a value of None is returned.

ERRORS/WARNINGS

This function can generate one of the following errors:

SEE ALSO

XpSetContext

2.5 XpDestroyContext

2.5.1 Short Description

Unsets and destroys a print context.

Functional specification

23
CDE/Motif PST

CDEnext

2.5.2 Long Description
NAME

XpDestroyContext - unset and destroy a print context.

SYNOPSIS

#include <X11/extensions/Print.h>

void XpDestroyContext(
Display *display,
XPContext print_context)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

print_context A pre-existing print context.

RETURN VALUE

None.

DESCRIPTION

XpDestroyContext closes any outstanding associations between the print context and any display
connections, and then destroys the print context to reclaim memory. All display connections using the
print context will no longer be able to access the print context or re-set it (i.e. XpSetContext) in the
future.

Since all X Print calls act upon a print context, prematurely destroying a print context will cause in-
progress pages, documents and jobs to be canceled within the X Print Server.

ERRORS/WARNINGS

This function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

SEE ALSO

XpCreateContext

2.6 XpGetScreenOfContext

2.6.1 Short Description

Get the screen associated with the specified print context.

Functional specification

24
CDE/Motif PST

CD
En

ex
t

2.6.2 Long Description
NAME

XpGetScreenOfContext - get the screen associated with the current print context

SYNOPSIS

#include <X11/extensions/Print.h>

Screen *XpGetScreenOfContext(
Display *display,
XPContext print_context)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

print_context A pre-existing print context.

RETURN VALUE

A pointer to the associated screen.

DESCRIPTION

XpGetScreenOfContext returns the screen that is associated with the print context. This call must be
made after XpStartDoc (see XpCreateContext) to determine which specific screen X-resources
must be created on.

ERRORS/WARNINGS

This function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

SEE ALSO

XpCreateContext

2.7 XpGetPageDimensions

2.7.1 Short Description

Get the page dimensions for the current printer settings.

Functional specification

25
CDE/Motif PST

CDEnext

2.7.2 Long Description
NAME

XpGetPageDimensions - get the page dimensions for the current printer settings

SYNOPSIS

#include <X11/extensions/Print.h>

Status XpGetPageDimensions(
Display *display,
XPContext print_context,
unsigned short *width, /* return value */
unsigned short *height, /* return value */
XRectangle *reproducible_area) /* return value */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

print_context A pre-existing print context.

width The pixel width of the page currently selected in the print context.

height The pixel height of the page currently selected in the print context.

reproducible_area The net reproducible area of the page currently selected in the print
context, expressed in pixel offsets and dimension.

RETURN VALUE

Returns a Status of 0 on failure, or 1 on success..

DESCRIPTION

XpGetPageDimensions considers the medium currently selected in the print context (derived in part
from default-medium, default-input-tray, input-trays-medium, content-orientation, default-resolution), and
returns the total width and height of the page in pixels, and the net reproducible area within the total width
and height.

ERRORS/WARNINGS

This function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

SEE ALSO

XpSetContext

Functional specification

26
CDE/Motif PST

CD
En

ex
t

2.8 XpStartJob - XpEndJob - XpCancelJob

2.8.1 Short Description

Indicates the beginning and ending of a single print job.

2.8.2 Long Description
NAME

XpStartJob - start a print job

XpEndJob - end a print job

XpCancelJob - cancel a print job

SYNOPSIS

#include <X11/extensions/Print.h>

void XpStartJob(
Display *display,
XPSaveData save_data)

void XpEndJob (
Display *display)

void XpCancelJob (
Display *display)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

save_data If set to XPSpool, then the document data is typically sent to a spooler. If
XPGetData, then the document data is made available to
XpGetDocumentData.

RETURN VALUE

None.

DESCRIPTION

XpStartJob signals the beginning of a new print job.

If save_data is XPGetData, then the X Print Server buffers the document output for retrieval by
XpGetDocumentData. The X Print Server will block the client’s display connection if the output
buffer grows too large, either because XpGetDocumentData has not been called, or
XpGetDocumentData has been called but is not consuming document data fast enough.

Functional specification

27
CDE/Motif PST

CDEnext

The XPSaveData values for save_data are defined in <X11/extensions/Print.h>:

#define XPSpool 1 /* Job data sent to spooler */
#define XPGetData 2 /* Job data via XpGetDocumentData */

XpEndJob signals the end of a print job. All resulting job data is assembled and combined with data
previously sent by XpPutDocumentData. If save_data is XPSpool, then the ddx driver within the
X Print Server submits the results, typically to a print spooler (for example, lp).

XpCancelJob cancels an in-progress job. If save_data is XPGetData, then data available to
XpGetDocumentData is no longer guaranteed to be valid or recoverable for the current job. If
save_data is XPSpool, then the X Print Server will discard previously generated document data and
reset in preparation for future jobs. Depending on the driver and spooler configuration, a partial document
or page may be generated (e.g. the driver is directly attached to a device, and cannot recall data).

All changes to the XPJobAttr attribute pool (see XpSetAttributes) must be made prior to calling
XpStartJob, after which a XPBadSequence will be generated if changes are attempted, until
XpEndJob is called.

The last XPJobAttr attribute to be modified prior to the PrintStartJob protocol request is when
XpStartJob internally calls XpSetAttributes on the job attribute job-owner. On POSIX
systems, the job-owner attribute is set using getpwuid(3c) on the result of getuid(3c). The job-
owner attribute can then be read by others (but not written) to determine job ownership, and may be used
by the X Print Server to submit jobs to the spooler when save_data is XPSpool.

For clients selecting XPPrintMask (see XpSelectInput), the event XPPrintNotify will be
generated with its detail field set to XPStartJobNotify or XPEndJobNotify when the X Print
Server has completed XpStartJob and XpEndJob respectively.

XPEndJobNotify indicates when the document data has been sent to the spooler
(save_data=XPSpool) or been completely sent to the client via XpGetDocumentData
(save_data=XPGetData) - it does not mean that the client has received all the document data.

For more information, see documentation on the Print Dialog Manager (PDM) and X Print Server Drivers.

Conceptually, a “Job” is a collection of “Documents”, where each Document is in turn a collection of
“Pages”. Depending on the print facilities underlying the X Print Server (for example, the Distributed
Print Management Facility (PDMF)), these delineations may be mapped by a ddx driver into real
functionality (e.g. see the server attribute multiple-documents-supported).

ERRORS/WARNINGS

These functions can generate one of the following errors:

XPBadContext A valid print context id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X
Print Service Extension calls (example, XpEndJob prior to
XpStartJob).

BadValue The value specified for save_data is not valid.

Functional specification

28
CDE/Motif PST

CD
En

ex
t

SEE ALSO

XpSetContext, XpPutDocumentData, XpSelectInput, XpSetAttributes

2.9 XpStartDoc - XpEndDoc - XpCancelDoc

2.9.1 Short Description

Indicates the beginning and ending of a single print document within a print job.

2.9.2 Long Description
NAME

XpStartDoc - start a print document

XpEndDoc - end a print docoument

XpCancelDoc - cancel a print document

SYNOPSIS

#include <X11/extensions/Print.h>

void XpStartDoc (
Display *display,
XPDocumentType type)

void XpEndDoc (
Display *display)

void XpCancelDoc (
Display *display)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

type Specifies the type of document: XPDocRaw or XPDocNormal

RETURN VALUE

None.

DESCRIPTION

XpStartDoc signals the beginning of a new print document.

Functional specification

29
CDE/Motif PST

CDEnext

If type is XPDocRaw, then the client will provide all the data for the resulting document using
XpPutDocumentData; the X Print Server will not write any data into the resulting document. Calling
XpStartPage in a XPDocRaw document will generate a XPBadSequence error. For more
information, see XpPutDocumentData.

If type is XPDocNormal, then the X Print Server will generate document data, and depending on the
ddx driver, can incorporate additional data from XpPutDocumentData into the output. For more
information, see XpPutDocumentData.

The XPDocumentType values for type are defined in <X11/extensions/Print.h>:

#define XPDocNormal 1 /* Doc data handled by Xserver*/
#define XPDocRaw 2 /* Doc data passed through Xserver*/

XpEndDoc signals the end of a print document. All resulting document data is assembled and combined
with data previously sent by XpPutDocumentData.

XpCancelDoc cancels an in-progress document. If save_data to XpStartJob is XPGetData,
then data available to XpGetDocumentData is no longer guaranteed to be valid or recoverable for the
current job. If save_data to XpStartJob is XPSpool, then the X Print Server will discard
previously generated document data and reset in preparation for future documents. Depending on the
driver and spooler configuration, a partial page or document may be generated (e.g. the driver is directly
attached to a device, and cannot recall data).

Unlike XpStartJob, XpEndJob, XpStartPage and XpEndPage, an application is not required to
call XpStartDoc and XpEndDoc in the process of printing. The “document” delineation may not be
useful from the application’s or spooler’s perspective, hence is made optional. If XpStartPage is called
immediately after XpStartJob, then a synthetic XpStartDoc with XPDocNormal will be generated
by the X Print Server prior to XpStartPage (i.e., XPStartDocNotify and XPStartPageNotify
will have the same sequence number). Likewise, if XpEndJob is called immediately after XpEndPage,
then a synthetic XpEndDoc will be generated by the X Print Server prior to XpEndJob (i.e.,
XPEndDocNotify and XPEndJobNotify will have the same sequence number).

All changes to the XPDocAttr attribute pool (see XpSetAttributes) must be made prior to calling
XpStartDoc, after which a XPBadSequence will be generated if changes are attempted, until
XpEndDoc is called.

For clients selecting XPPrintMask (see XpSelectInput), the event XPPrintNotify will be
generated with its detail field set to XPStartDocNotify or XPEndDocNotify when the X Print
Server has completed XpStartDoc and XpEndDoc respectively.

XPStartDocNotify need not be received prior to calling XpStartPage.

For more information, see documentation on the Print Dialog Manager (PDM) and X Print Server Drivers.

Conceptually, a “Job” is a collection of “Documents”, where each Document is in turn a collection of
“Pages”. Depending on the print facilities underlying the X Print Server (for example, the Distributed
Print Management Facility (PDMF)), these delineations may be mapped by a ddx driver into real
functionality (e.g. see the server attribute multiple-documents-supported).

ERRORS/WARNINGS

These functions can generate one of the following errors:

Functional specification

30
CDE/Motif PST

CD
En

ex
t

XPBadContext A valid print context id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X
Print Service Extension calls (example, XpEndDoc prior to
XpStartDoc).

BadValue The value specified for type is not valid.

SEE ALSO

XpPutDocumentData, XpSelectInput, XpSetAttributes

2.10 XpPutDocumentData

2.10.1 Short Description

Allows an application to send and incorporate data into the output.

2.10.2 Long Description
NAME

XpPutDocumentData - send data to the output

SYNOPSIS

#include <X11/extensions/Print.h>

void XpPutDocumentData (
Display *display,
Drawable drawable,
unsigned char *data,
unsigned long data_len,
char *doc_fmt,
char *options)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

drawable For XPDocRaw documents, must be None. For XPDocNormal
documents, the destination drawable for rendering.

data Specifies the device-specific data sent.

data_len Specifies the number of bytes in data.

doc_fmt Specifies the type of data sent. See below for valid values. String limited to
XPCS characters.

Functional specification

31
CDE/Motif PST

CDEnext

options Specifies ddx driver dependent options. String limited to XPCS characters.

RETURN VALUE

None.

DESCRIPTION

Depending on type for XpStartDoc, XPDocRaw or XPDocNormal, XpPutDocumentData has
two modes of operation.

In XPDocRaw mode, XpPutDocumentData sends data directly to the output, and drawable must
be None, else a BadDrawable will be generated. The X Print Server does not emit document or page
control codes into the output, and data is passed through unmodified. This is useful for sending
previously constructed and complete documents (e.g. a PCL file), and using the X Print Server’s job
control and submission capabilities. Since XPDocRaw implies that the client will be generating all
document output, an XPBadSequence error will be generated if XpStartPage is called in this mode.
The printer attribute xp-raw-formats-supported defines the valid values for doc_fmt in this
mode, with unsupported values for doc_fmt causing BadValue to be generated.

In XPDocNormal mode, XpPutDocumentData sends data to the X Print Server, and depending on the
ddx driver implementation, integrates data into the output. The parameters doc_fmt and options
describe the format of data which guides the ddx driver in interpreting data. The printer attribute xp-
embedded-formats-supported defines the valid values for doc_fmt in this mode, with
unsupported values for doc_fmt causing BadValue to be generated.

Depending on the ddx driver implementation in use, XpPutDocumentData could be used, for example,
to send a simple text file to a Postscript ddx driver that is capable of wrapping the appropriate document
and page control constructs around the text so that it can be printed on a Postscript printer. Likewise,
Encapsulated Postscript Files could be handled. Another use could be to send a TIFF file to a PCL ddx
driver that can convert the image from TIFF into PCL and then integrate it into the current PCL output.

There is no limit to the size of data that can be sent to the server using XpPutDocumentData.
XpPutDocumentData automatically decomposes the call into multiple protocol requests to make sure
that the maximum request size of the server is not exceeded.

ERRORS/WARNINGS

The function can generate one of the following errors:

XPBadContext A valid print context id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X
Print Service Extension calls (example, XpPutDocumentData prior to
XpStartDoc).

BadValue The value specified for doc_fmt is not valid.

BadDrawable The value specified for drawable is not valid.

XPBadResourceID The value specified for drawable is not valid for the print context and
print screen. The resource in question must be created in the proper print
context and on the correct screen.

Functional specification

32
CDE/Motif PST

CD
En

ex
t

SEE ALSO

2.11 XpGetDocumentData

2.11.1 Short Description

Setup callbacks to retrieve document data from a print context.

2.11.2 Long Description
NAME

XpGetDocumentData - setup callbacks to retrieve document data from a print context.

SYNOPSIS

#include <X11/extensions/Print.h>

Status XpGetDocumentData(
Display *data_display,
XPContext context,
XPSaveProc save_proc,
XPFinishProc finish_proc,
XPointer client_data)

ARGUMENTS

data_display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context The print context from which document data is to be retrieved.

save_proc A proc to be registered and called repeatedly to save blocks of document
data.

finish_proc A proc to be registered and called once when the print job has completed
and all document data has been sent to save_proc.

client_data Passed to save_proc and finish_proc when called.

RETURN VALUE

NULL if XpGetDocumentData encounters an error, non-NULL otherwise.

DESCRIPTION

XpGetDocumentData registers callbacks that allow a “consumer” to continuously retrieve document
data generated in the X Print Server by a separate “producer”, where both are referencing the same print
context. Though XpGetDocumentData retrieves document data, its lifetime is bounded by

Functional specification

33
CDE/Motif PST

CDEnext

XpStartJob and XpEndJob. XpGetDocumentData always returns immediately; if an error occurs
and the callbacks cannot be registered, NULL is returned, otherwise a non-NULL is returned and the
callbacks will be called sometime after the return from XpGetDocumentData. This producer/consumer
model is initiated when XpStartJob is called by the producer with save_data equal XPGetData,
and is subsequently enabled when XpGetDocumentData is called by the consumer.

Once XpGetDocumentData is called on data_display, data_display cannot be used for any
additional X requests until finish_proc is called and returns. Further, data_display cannot be
closed from within save_proc or finish_proc. To avoid deadlock, the producer and consumer must
run in separate processes, or in separate threads of a single process.

After XpGetDocumentData successfully registers the callbacks (ie, it returns non-NULL), any
generated X errors (for example, BadAlloc) or Xp errors (for example, XPBadContext or
XPBadSequence) that are the result of XpGetDocumentData will cause the appropriate errors to be
generated (see XSetErrorHandler), and will cause finish_proc to be called with a status of
XPGetDocError. Any other activities (for example, a separate process destroying the print context) that
prove fatal to the progress of XpGetDocumentData will also cause finish_proc to be called with a
status of XPGetDocError.

If XpGetDocumentData is called prior to XpStartJob, then a XPBadSequence error is generated
and finish_proc is called with XPGetDocError. If XpGetDocumentData is called after
XpStartJob and save_data was specified as XPSpool, then a XPBadSequence error is generated
and finish_proc is called with XPGetDocError. If the producer starts generating data, and a
consumer has not been established or the consumer cannot consume data quickly enough, then the
producer’s display connection will be blocked by the X Print Server.

save_proc, as registered by XpGetDocumentData, is repeatedly called on each block of document
data sent by the X Print Server until either XpEndJob or XpCancelJob is called. Each block provided
to data will be data_len bytes in length, and the memory for data itself will be owned by
XpGetDocumentData, so save_proc should copy data to another location before returning. After
the last block of data has been delivered to save_proc, finish_proc is called with final status. The
signatures for save_proc and finish_proc are defined in <X11/extensions/Print.h> as
follows:

typedef void (*XPSaveProc)(Display *data_display,
 XPContext context,
 unsigned char *data,
 unsigned long data_len,
 XPointer client_data);

typedef void (*XPFinishProc)(Display *data_display,
 XPContext context,
 XPGetDocStatus status,
 XPointer client_data);

Until XpEndJob or XpCancelJob is called, it is possible that various XPPrintNotify events will be
generated (for example, a page has been canceled). It is left as an exercise to the consumer (or producer)
whether to select for these events and terminate save_proc (by calling XpEndJob or XpCancelJob)
in response to canceled pages or documents. Since data is considered opaque until the print job completes
successfully (i.e. no cancellations), and there is no correlation between the sequence of data blocks and
received events, and the consumer may not be able to interpret the byte stream, consumers may want to
terminate save_proc upon receipt of cancellation events.

Functional specification

34
CDE/Motif PST

CD
En

ex
t

When finish_proc is called, sometime after XpGetDocumentData is called and returns, the
following status codes as defined in <X11/extensions/Print.h> are returned:

#define XPGetDocFinished 0 /* normal termination */
#define XPGetDocSecondConsumer 1 /* setup error */
#define XPGetDocError 2 /* progress error */

XPGetDocFinshed (zero) indicates that all intended document data has been delivered by way of
save_proc. All cancellation events are guaranteed to have arrived by the time finished_proc is
called, and they should be taken into consideration for evaluating the validity of the document data
returned.

XPGetDocSecondConsumer indicates that a consumer had already been established for the print
context. The X Print Server only supports one consumer per print context.

XPGetDocError indicates that an error has been generated (for example, XPBadContext or
XPBadSequence) and that no further document data will be delivered by the X Print Server to
save_proc.

After finish_proc returns, both save_proc and finish_proc are unregistered and will no longer
be called.

ERRORS/WARNINGS

XPBadContext The specified print context id is not valid.

XPBadSequence The function was not called in the proper order with respect to the other X
Print Service Extension calls (example, XpGetDocumentData prior to
XpStartJob).

SEE ALSO

XpStartJob, XpDestroyContext

2.12 XpStartPage - XpEndPage - XpCancelPage

2.12.1 Short Description

Indicates the beginning and ending of a single print page within a document.

2.12.2 Long Description
NAME

XpStartPage - start a print page

XpEndPage - end a print page

XpCancelPage - cancel a print page

Functional specification

35
CDE/Motif PST

CDEnext

SYNOPSIS

#include <X11/extensions/Print.h>

void XpStartPage (
Display *display,
Window window,
Bool exposures)

void XpEndPage (
Display *display)

void XpCancelPage (
Display *display)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

window Specifies the window ID (a top level print window).

exposures Boolean that specifies if exposure events should be generated per the below
discussion.

RETURN VALUE

None.

DESCRIPTION

XpStartPage signals the beginning of a new print page, with window serving as the drawable
representing the page. window is required to be a top level window, else a BadWindow is generated. No
generation of document data will occur for rendering operations against window or its inferiors prior to
XpStartPage or after XpEndPage.

XpStartPage causes window to be resized to the size of the media selected - the actual “printable area”
may be smaller than the media size (see XpGetPageDimensions). Then XpStartPage causes the
windows in the window hierarchy to be cleared to their background with the same constraints as
XClearArea(display, window, 0, 0, 0, 0, exposures), and exposure events to be generated for
each window if exposures if True and the client has elected to receive Expose events using
XSelectInput.

Within the XpStartPage and XpEndPage sequence, attempts to resize, move or unmap window will
yield undefined results. Attempts to resize or move inferiors of window will be done with the same
contraits as ConfigureNotify, except that the contents of any configured window may be lost; an
Expose event will be generated if a window’s contents are lost.

XpEndPage signals the end of a print page. All resulting page data is assembled and combined with data
previously sent by XpPutDocumentData.

Functional specification

36
CDE/Motif PST

CD
En

ex
t

XpCancelPage cancels an in-progress page. If save_data to XpStartJob is XPGetData, then
data available to XpGetDocumentData is no longer guaranteed to be valid or recoverable for the
current job. If save_data to XpStartJob is XPSpool, then the X Print Server will discard
previously generated page data and reset in preparation for future pages. Depending on the driver and
spooler configuration, a partial page may be generated (e.g. the driver is directly attached to a device, and
cannot recall data).

All changes to the XPPageAttr attribute pool (see XpSetAttributes) must be made prior to calling
XpStartPage, after which a XPBadSequence will be generated if changes are attempted, until
XpEndPage is called.

For clients selecting XPPrintMask (see XpSelectInput), the event XPPrintNotify will be
generated with its detail field set to XPStartPageNotify or XPEndPageNotify when the X Print
Server has completed XpStartPage and XpEndPage respectively. If the event Expose is also
selected for (see XSelectInput), the exposure events will be generated prior to XPPrintNotify.

XPStartPageNotify need not be received prior to calling any other X rendering routines.

For more information, see documentation on the Print Dialog Manager (PDM) and X Print Server Drivers.

Conceptually, a “Job” is a collection of “Documents”, where each Document is in turn a collection of
“Pages”. Depending on the print facilities underlying the X Print Server (for example, the Distributed
Print Management Facility (PDMF)), these delineations may be mapped by a ddx driver into real
functionality (e.g. see the server attribute multiple-documents-supported).

ERRORS/WARNINGS

These functions can generate one of the following errors:

XPBadContext A valid print context id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X
Print Service Extension calls (example, XpEndPage prior to
XpStartPage).

BadWindow The value specified for window is not valid.

XPBadResourceID The value specified for window is not valid for the print context and print
screen. The resource in question must be created in the proper print
context and on the correct screen.

BadValue The value specified for exposures is not valid.

SEE ALSO

XpPutDocumentData, XpSelectInput, XpSetAttributes

Functional specification

37
CDE/Motif PST

CDEnext

2.13 XpSelectInput

2.13.1 Short Description

Selects which X Print events from the specified print context the client is interested in.

2.13.2 Long Description
NAME

XpSelectInput - selects which X Print events from the specified print context the client is interested in.

SYNOPSIS

#include <X11/extensions/Print.h>

void XpSelectInput (
Display *display,
XPContext context,
unsigned long event_mask)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context The print context from which to select events.

event_mask Specifies the event mask. This mask is the bitwise OR of one or more of
the valid events mask bits (see below).

RETURN VALUE

None.

DESCRIPTION

XpSelectInput selects which X Print events from the specified print context the client is interest in.
The X Print Events are generated from a current print context, and not from a window as is the case with
XSelectInput.

The bits for event_mask are defined in <X11/extensions/Print.h>:

#define XPNoEventMask 0
#define XPPrintMask (1L<<0)
#define XPAttributeMask (1L<<1)

The resulting events are defined in <X11/extensions/Print.h>:

#define XPPrintNotify 0
#define XPAttributeNotify 1

Functional specification

38
CDE/Motif PST

CD
En

ex
t

ERRORS/WARNINGS

The function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

BadValue The value specified for event_mask is not valid.

SEE ALSO

XpInputSelected

2.14 XpInputSelected

2.14.1 Short Description

Query which X Print events from the specific print context the client has selected to receive.

2.14.2 Long Description
NAME

XpInputSelected - query which X Print events from the specified print context the client has selected to
receive

SYNOPSIS

#include <X11/extensions/Print.h>

unsigned long XpInputSelected (
Display *display,
XPContext context,
unsigned long *all_event_mask) /* return value */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context The print context to which the query is being made.

all_event_mask The set of events any client have selected.

RETURN VALUE

A event_mask bit mask describing which event classes the client has selected to receive.

Functional specification

39
CDE/Motif PST

CDEnext

DESCRIPTION

XpInputSelected queries which X Print events from the specified print context the client has selected
to receive. The X Print Events are generated from a print context, and not from a window as is the case
with XSelectInput. As events arrive, the .context field in the event can be used to determine
which print context generated the event.

See XpSelectInput for the event_mask and all_event_mask values.

ERRORS/WARNINGS

The function can generate one of the following errors:

XPBadContext The specified print context id is not valid.

SEE ALSO

XpSelectInput

2.15 XpGetAttributes

SHORT DESCRIPTION

Get an attribute pool from the specified print context.

2.15.1 Long Description
NAME

XpGetAttributes - get an attribute pool from the specified print context

SYNOPSIS

#include <X11/extensions/Print.h>

char *XpGetAttributes (
Display *display,
XPContext context,
XPAttributes type)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context Specifies the print context from which the attribute pool is to be retrieved.

type Specifies the attribute pool.

Functional specification

40
CDE/Motif PST

CD
En

ex
t

RETURN VALUE

A COMPOUND_TEXT resource string pool, else NULL if any errors occured.

DESCRIPTION

XpGetAttributes returns pool, a COMPOUND_TEXT resource string representing the attribute pool
specified by type. The caller is expected to free pool when it is no longer needed using XFree(3).

The values for the typedef XPAttributes in <X11/extensions/Print.h> are:

#define XPJobAttr 1 /* get/set */
#define XPDocAttr 2 /* get/set */
#define XPPageAttr 3 /* get/set - subset of XPDocAttr */
#define XPPrinterAttr 4 /* get only (library) */
#define XPServerAttr 5 /* get only (library), no context needed */

The attribute pool (hence the resource string) consists of many name-value pairs (for example, ‘copy-
count: 3’). The syntax of an attribute pool is the same as an X resource file (see “Resource Manager
Functions, Section 15.1” in X Window System for X11R5 by Scheifler and Gettys).

Valid characters for each name (left hand side) are derived from the Posix Portable Filename Character Set
(PPFCS), which is “a”-”z” and “A”-”Z” and “0”-”9” and “_” and “-”. Valid characters for each
value (right hand side) are all characters except NULL and unescaped NEWLINE, though all predefined
values in the X Print Service are confined to X Portable Character Set (XPCS) characters. Non XPCS
values are typically limited to localized “description” strings. See XpCreateContext regarding the
locale hint for more information on localized values.

ERRORS/WARNINGS

The function can generate of one of the following errors:

XPBadContext The specified print context id is not valid.

BadValue The value specified for type is not valid.

BadAlloc Insufficient memory.

SEE ALSO

XpCreateContext

2.16 XpGetOneAttribute

SHORT DESCRIPTION

Get a single print attribute from the specified print context.

Functional specification

41
CDE/Motif PST

CDEnext

2.16.1 Long Description
NAME

XpGetOneAttribute - get a single print attribute from the specified print context.

SYNOPSIS

#include <X11/extensions/Print.h>

char *XpGetOneAttribute (
Display *display,
XPContext context,
XPAttributes type,
char *attribute_name)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context The print context from which the attribute value is being retrieved.

type Type of pool from which the attribute will be retrieved.

attribute_name Name of attribute to be returned.

RETURN VALUE

A COMPOUND_TEXT string attribute_value, else NULL if any errors occured.

DESCRIPTION

XpGetOneAttribute is a variation of XpGetAttributes to get a single attribute value from an
attribute pool. Unlike the protocol used with XpGetAttributes, in which the reply contains an entire
attribute pool, the protocol for XpGetOneAttribute has a reply with just one attribute_value.

When retrieving attribute_value (for example, from the name-value pair “copy-count: 3”),
attribute_name should not include a colon (for example, “copy-count”), and the caller is
expected to free the attribute_value returned (for example, “3”) using XFree(3).

XpSetAttributes can be used with the XPAttrMerge flag to set a single attribute.

ERRORS/WARNINGS

These functions can generate of one of the following errors:

XPBadContext The specified print context id is not valid.

BadValue The value specified for type is not valid.

BadAlloc Insufficient memory.

Functional specification

42
CDE/Motif PST

CD
En

ex
t

SEE ALSO

XpSelectInput, XpSetContext, XrmGetStringDatabase

2.17 XpSetAttributes

SHORT DESCRIPTION

Set or update an attribute pool in the specified print context.

2.17.1 Long Description
NAME

XpSetAttributes - set or update an attribute pool in the specified print context

SYNOPSIS

#include <X11/extensions/Print.h>

void XpSetAttributes (
Display *display,
XPContext context,
XPAttributes type,
char *pool,
XPAttrReplacement replacement_rule)

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

context The print context in which an attribute pool is to be set.

type Specifies the type of the attribute pool to be set.

pool An attribute pool represented as a resource string. String encoded in
COMPOUND_TEXT.

replacement_rule One of XPAttrReplace or XPAttrMerge.

RETURN VALUE

None.

DESCRIPTION

XpSetAttributes accepts pool, a COMPOUND_TEXT resource string representing new name-value
pairs for the attribute pool specified by type. The attribute pool is modified by the new name-value pairs
according to replacement_rule. For XPAttrReplace, the exisiting attribute pool is discarded and

Functional specification

43
CDE/Motif PST

CDEnext

replaced with pool. For XPAttrMerge, pool is merged into the existing attribute pool; pre-existing
name-value pairs are replaced, and non-existing name-value pairs are added. The contents of pool is not
affected by this call, and can be freed by the caller afterwords.

The values for the typedef XPAttributes in <X11/extensions/Print.h> are:

#define XPJobAttr 1 /* get/set */
#define XPDocAttr 2 /* get/set */
#define XPPageAttr 3 /* get/set - subset of XPDocAttr */
#define XPPrinterAttr 4 /* get only (library) */
#define XPServerAttr 5 /* get only (library), no context needed */

The values for the typedef XPAttrReplacement in <X11/extensions/Print.h> are:

#define XPAttrReplace 1
#define XPAttrMerge 2

For attribute pools that are read-write (see “get/set” in XPAttributes definition), there exists in the
XPPrinterAttr attribute pool an attribute for each and every read-write pool that shows all supported
(settable) attributes. For example, in the XPPrinterAttr attribute pool can be found the attributes:
job-attributes-supported, document-attributes-supported and xp-page-
attributes-supported.

When setting supported attribute names, the X Print Server and associated driver will validate the new
values and ignore those that are invalid - pre-existing values remain. When setting unsupported (i.e,
unknown) attribute names, no validation is done, and the name-value pairs will be set, even though they
will not be used. When deleting (i.e. failing to reset with XPAttrReplace) a supported attribute name, the
X Print Server may respond by explicitly re-setting the attribute name with a default value, or may
implicitly rely on an internal default without re-setting the attribute.

When setting certain supported attributes, the X Print Server and associated driver may choose to modify
other associated attributes. For example, considering the XPPrinterAttr attribute document-
formats-supported, setting the XPDocAttr attribute document-format may cause a number of
other attributes to change.

For attribute pools that are read-only (see “get only” in XPAttributes definition), attempting to use
XpSetAttributes generates a BadMatch. The X Print Server however is capable of modifying any
attribute pool at any time, including those that are read-only for a client.

The lifetime of all attribute pools are bounded by the lifetime of the print context they are contained in.
When set, all attribute values will “stick” across all Xp operations, until changed by the user directly, the X
Print Server directly, or changed because of a side effect when either the user or X Print Server changed
another attribute value.

For a complete description of all print attributes, the precedence between print attributes, and the “side
effects” of setting certain print attributes on other print attributes, etc, See “X Print Service Attributes” on
page 97.

Functional specification

44
CDE/Motif PST

CD
En

ex
t

To monitor changes to the attribute pools, see XpSelectInput and the event XPAttributeNotify.
Since a print context can be shared among clients, changes made by one client will be seen by all others,
and if selected for, the event XPAttributeNotify will be sent to all clients referencing the print
context when changes do occur. It is the responsibility of the clients sharing a print context to coordinate
their calls to XpGetAttributes and XpSetAttributes to avoid readers/writer problems.

ERRORS/WARNINGS

These functions can generate of one of the following errors:

XPBadContext The specified print context id is not valid.

XPBadSequence A request to set an attribute pool occured at a time when the attribute pool
could not be modified (for example, modifying XPJobAttr immediately
after calling XpStartJob).

BadValue The value specified for type is invalid.

BadMatch The attribute pool specified by pool cannot be set.

BadAlloc Insufficient memory.

SEE ALSO

XpSelectInput, XpSetContext, XrmGetStringDatabase

2.18 XpGetPrinterList

SHORT DESCRIPTION

Retrieves a list of all printers supported on an X Print Server.

2.18.1 Long Description
NAME

XpGetPrinterList - retrieves a list of all printers supported on an X Print Server

SYNOPSIS

#include <X11/extensions/Print.h>

XPPrinterList XpGetPrinterList (
Display *display,
char *printer_name,
int *list_count) /* return value */

ARGUMENTS

display Specifies a pointer to the print Display structure; returned from
XOpenDisplay.

Functional specification

45
CDE/Motif PST

CDEnext

printer_name Specifies the name of the printer for which information is desired. If
NULL, then information is returned for all printers associated with the
server.

list_count The number of printers returned in printer_list.

RETURN VALUE

printer_list, or NULL if any errors occured.

DESCRIPTION

XpGetPrinterList returns a list of printer records where each record describes a printer supported by
the X Print Server.

If printer_name is NULL, then a list of all printers supported is returned. If printer_name is non-
NULL, only print records matching printer_name are returned, and if no records match
printer_name, then NULL is returned.

printer_name takes a COMPOUND_TEXT string, and the .name and .desc fields in the returned list
will be in COMPOUND_TEXT (note, ISO 8859-1 (Latin-1) is a proper subset of COMPOUND_TEXT, so can
be used directly). If printer_name is in a code-set that the X Print Server cannot convert (into its
operating code-set), then the X Print Server may fail to locate the requested printer. If printer_name
is NULL, then all printer names, regardless of their code-set, can be returned, leaving the task of specific
printer recognition up to the caller.

When XpGetPrinterList is called, the client’s locale (see XpSetLocaleHinter) is included in
the request as a “hint” to the X Print Server. If supported by the implementation, the X Print Server will
use the hint to locate a localized description (desc) for each printer in the list. If the X Print Server
cannot understand the hint, the X Print Server will typically fall back to descriptions in the locale it is
running in.

Printer lists can be freed by calling XpFreePrinterList.

STRUCTURES

The XPPrinterList structure defined in <X11/extensions/Print.h> contains:

typedef struct {
char *name; /* name */
char *desc; /* localized description */

} XPPrinterRec, *XPPrinterList;

ERRORS/WARNINGS

This function can cause the generation of one of the following errors:

BadAlloc Insufficient memory.

SEE ALSO

XpFreePrinterList

Functional specification

46
CDE/Motif PST

CD
En

ex
t

2.19 XpFreePrinterList

SHORT DESCRIPTION

A convenience routine to free a printer list.

2.19.1 Long Description
NAME

XpFreePrinterList - a convenience routine to free a printer list

SYNOPSIS

#include <X11/extensions/Print.h>

void XpFreePrinterList (
XPPrinterList printer_list)

ARGUMENTS

printer_list A list of printer records returned by XpGetPrinterList.

RETURN VALUE

None.

DESCRIPTION

XpFreePrinterList frees a list of printer records allocated and returned by XpGetPrinterList.

ERRORS/WARNINGS

None.

SEE ALSO

XpGetPrinterList

2.20 XpRehashPrinterList

SHORT DESCRIPTION

Cause an X-Server to recompute the list of available printers.

2.20.1 Long Description
NAME

XpRehashPrinterList - cause the X-Server to recompute its list of available printers

Functional specification

47
CDE/Motif PST

CDEnext

SYNOPSIS

#include <X11/extensions/Print.h>

void XpRehashPrinterList (
Display *display)

ARGUMENTS

display Specifies a pointer to the print Display structure; returned from
XOpenDisplay.

RETURN VALUE

None.

DESCRIPTION

XpRehashPrinterList causes the X-Server to recompute (update) its list of available printers, and
update the attributes for the printers. The intended usage of this routine is in a special tool that a system
administrator can run after changing the printer topology. General applications are encouraged to use this
call sparingly if at all, and let the system administrator control printer topology updates.

Depending on the print facilities underlying the X-Server, the X-Server may be able to detect changes in
the printer topology and dynamically update to reflect the changes, or may not be able to detect the
changes and will have to be notified via XpRehashPrinterList.

In-progress print contexts will not be affected by XpRehashPrinterList as long as their printer
destination remains valid.

ERRORS/WARNINGS

None.

SEE ALSO

XpGetPrinterList

2.21 XpQueryVersion

2.21.1 Short Description

Query an X-Server to determine if it supports the X Print Service Extension, and if it does, which version of the
X Print Service Extension.

2.21.2 Long Description
NAME

XpQueryVersion - query an X-Server to determine if it supports the X Print Service Extension

Functional specification

48
CDE/Motif PST

CD
En

ex
t

SYNOPSIS

#include <X11/extensions/Print.h>

Status XpQueryVersion (
Display *display,
short *major_version, /* return value */
short *minor_version) /* return value */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

major_version The major version if the X Print Service Extension exists, else zero.

minor_version The minor version if the X Print Service Extension exists, else zero.

RETURN VALUE

A non-zero status if the X Print Service Extension exists; otherwise a status of zero.

DESCRIPTION

XpQueryVersion determines if the X Print Service Extension is present. A non-zero Status is
returned if the extension is supported, otherwise a zero Status is returned. Furthermore, the major and
minor version numbers are returned to indicate the level of X Print Service Extension support.

The X Print Service Extension is “passively” initialized on the first call to any X Print Service function.
There is no need to explicitly initialize the X Print Service Extension.

ERRORS

None.

SEE ALSO

XListExtension, XFreeExtensionList

2.22 XpQueryExtension

2.22.1 Short Description

Query an X-Server to determine if it supports the X Print Service Extension, and if it does, what the offsets are for
associated events and errors.

Functional specification

49
CDE/Motif PST

CDEnext

2.22.2 Long Description
NAME

XpQueryVersion - query an X-Server to determine if it supports the X Print Service Extension

SYNOPSIS

#include <X11/extensions/Print.h>

Bool XpQueryExtension (
Display *display,
int *event_base_return, /* return value */
int *error_base_return) /* return value */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

event_base_return The base value for X Print Service Extension events.

error_base_return The base value for X Print Service Extension errors.

RETURN VALUE

A non-zero status if the X Print Service Extension exists; otherwise a status of zero.

DESCRIPTION

XpQueryExtension determines if the X Print Service Extension is present. A non-zero value (True) is
returned if the extension is supported, otherwise a zero value (False) is returned. If the extension is present,
the base values for events and errors are returned, and can be used to decode incoming event and error
values.

The X Print Service Extension is “passively” initialized on the first call to any X Print Service function.
There is no need to explicitly initialize the X Print Service Extension.

ERRORS

None.

SEE ALSO

XListExtension, XFreeExtensionList

Functional specification

50
CDE/Motif PST

CD
En

ex
t

2.23 XpQueryScreens

2.23.1 Short Description

Query an X-Server to determine which of all the screens on an X Server support the X Print Service Extension.

2.23.2 Long Description
NAME

XpQueryScreens - query an X-Server to determine which of all the screens on an X Server support the X
Print Service Extension

SYNOPSIS

#include <X11/extensions/Print.h>

Screen **XpQueryScreens (
Display *display,
int *list_count) /* return value */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

list_count Specifies the number of screens contained in the return value.

RETURN VALUE

A non-NULL pointer of a list of screen pointers if one or more screens support the X Print Service
Extension; otherwise a status of NULL.

DESCRIPTION

XpQueryScreens determines if the X Print Service Extension is present, and if so, which of all the
screens on the X Server support the X Print Service Extension. Unlike many other extensions, the X Print
Service Extension may be restricted to a subset of all available screens - for example, a single X-Server
may be supporting video displays on some screens and printers on others.

The list of screens can be freed by calling XFree(3C).

ERRORS

None.

Functional specification

51
CDE/Motif PST

CDEnext

SEE ALSO

2.24 XpGetPdmStartParams

2.24.1 Short Description

A standard convenience function to build up parameters in accordance with the PDM Selection Protocol

2.24.2 Long Description
NAME

XpGetPdmStartParams - build up parameters in accordance with the PDM Selection Protocol

SYNOPSIS

#include <X11/extensions/Print.h>
#include <X11/XpPdm.h>

Status XpGetPdmStartParams (
Display *print_display,
Window print_window,
XPContext print_context,
Display *video_display,
Window video_window,
Display **selection_display, /* return value */
Atom *selection, /* return value */
Atom *type, /* return value */
int *format, /* return value */
unsigned char **data, /* return value */
int *nelements) /* return value */

ARGUMENTS

print_display Specifies a pointer to the print Display structure; returned from
XOpenDisplay on the X Print Server.

print_window Specifies a client window on any screen of print_display long-lived
enough for ICCCM communications of the final PDM status (“OK” or
“CANCEL” ClientMessage) sent to print_window.

print_context An existing print context that the PDM should reference.

video_display Specifies a pointer to the video Display structure; returned from
XOpenDisplay on the Video X-Server.

video_window Specifies the window on video_display off which the transient dialogs
from the PDM should be posted.

Functional specification

52
CDE/Motif PST

CD
En

ex
t

selection_display A returned display connection against which the PDM selection should be
made. May be equal to print_display or video_display, or may
be a new display connection that the caller should close when done.

selection A returned selection atom against which a PDM selection should be made.

type A returned type for the PDM Selection Protocol property the caller is
expected to create.

format A returned format for the PDM Selection Protocol property the caller is
expected to create.

data A returned data set for the PDM Selection Protocol property the caller is
expected to create. The caller is expected to XFree(3C) the data when
finished.

nelements A returned number of elements for the PDM Selection Protocol property
the caller is expected to create.

RETURN VALUE

NULL status if an error occured, non-NULL otherwise.

DESCRIPTION

XpGetPdmStartParams is a convenience routine used to construct the necessary property information
and selection display connection information needed to initiate a PDM Selection per the “PDM Selection
Protocol”. Once the information is constructed, the caller can manage the creation of a property, the
generation of a SelectionRequest, the receipt of a SelectionNotify event, and the recept of a
ClientMessage event, as described in the PDM Selection Protocol.

When finished, the caller is expected to free data using XFree(3C).

If NULL is returned by XpGetPdmStartParams, then an error occured and all return values are invalid.

XpGetPdmStartParams also implements the concept of an “alternate selection server”. By changing
the name of the x-selection or by changing the X-Server upon which the selection is made, an alternate
PDM can be engaged. By default, the PDM owning the PDM_MANAGER x-selection on the Print X-Server
is the PDM engaged.

Setting the environment variable XPDMSELECTION causes XpGetPdmStartParams to use an
alternate selection name. If not set, the selection name PDM_MANAGER is used.

Setting the environment variable XPDMDISPLAY causes XpGetPdmStartParams to locate the
selection on an alternate X Server. If not set, selection_display (a returned parameter) is set equal
to print_display. If set to one of the keywords “print” or “video”, selection_display is
set to print_display or video_display, respectively. If set to a valid DISPLAY-style string,
selection_display may be set, as appropriate, to one of print_display, video_display, or
to a new display connection made from within XpGetPdmStartParams. Only in the single case where
a new display connection is made should the caller close selection_display using
XCloseDisplay(3).

Functional specification

53
CDE/Motif PST

CDEnext

When XpGetPdmStartParams is called, the client’s locale (see XpSetLocaleHinter) is included
in the returned information as a “hint” to the Print Dialog Manager (PDM). If supported by the
implementation, the PDM will use the hint to display dialogs more appropriately labeled for the locale of
the client. If the Print Dialog Manager cannot understand the hint, the PDM will typically fall back to the
locale it is running in. Note that the locale of the print attributes that the PDM will subsequently access
have already been determined when the client called XpCreateContext.

ENVIRONMENT VARIABLES

See the above discussion regarding XPDMDISPLAY and XPDMSELECTION.

All environment variables are re-read each time XpGetPdmStartParams is called.

ERRORS/WARNINGS

SEE ALSO

2.25 XpGetAuthParams

2.25.1 Short Description

A standard convenience function to build up parameters in accordance with the PDM Selection Protocol

2.25.2 Long Description
NAME

XpGetAuthParams - build up parameters in accordance with the PDM Selection Protocol

SYNOPSIS

#include <X11/extensions/Print.h>

Status XpGetAuthParams (
Display *print_display,
Display *video_display,
Display **selection_display, /* return value */
Atom *selection, /* return value */
Atom *target) /* return value */

ARGUMENTS

print_display Specifies a pointer to the print Display structure; returned from
XOpenDisplay on the X Print Server.

video_display Specifies a pointer to the video Display structure; returned from
XOpenDisplay on the Video X-Server.

Functional specification

54
CDE/Motif PST

CD
En

ex
t

selection_display A returned display connection against which the PDM selection should be
made. May be equal to print_display or video_display, or may
be a new display connection that the caller should close when done.

selection A returned selection atom against which the conversion should be made.

target A returned target atom against which the conversion should be made.

RETURN VALUE

NULL status if an error occured, non-NULL otherwise.

DESCRIPTION

XpGetAuthParams is a convenience routine used to construct the necessary property information and
selection display connection information needed to initiate a transfer of display-connection authorization
information per the “PDM Selection Protocol”. Once the information is constructed, the caller can manage
the creation of a property, the generation of a SelectionRequest, the receipt of a
SelectionNotify event, and the subsequent transmission of authorization information. See
XpSendAuth and XpSendOneTicket for more details.

If NULL is returned by XpGetAuthParams, then an error occured and all return values are invalid.

XpGetAuthParams also implements the concept of an “alternate selection server”. By changing the
name of the x-selection or by changing the X-Server upon which the selection is made, an alternate PDM
can be engaged. By default, the PDM owning the PDM_MANAGER x-selection on the Print X-Server is the
PDM engaged.

Setting the environment variable XPDMSELECTION causes XpGetAuthParams to use an alternate
selection name. If not set, the selection name PDM_MANAGER is used.

Setting the environment variable XPDMDISPLAY causes XpGetAuthParams to locate the selection on
an alternate X Server. If not set, selection_display (a returned parameter) is set equal to
print_display. If set to one of the keywords “print” or “video”, selection_display is set
to print_display or video_display, respectively. If set to a valid DISPLAY-style string,
selection_display may be set, as appropriate, to one of print_display, video_display, or
to a new display connection made from within XpGetAuthParams. Only in the single case where a new
display connection is made should the caller close selection_display using XCloseDisplay(3).

ENVIRONMENT VARIABLES

See the above discussion regarding XPDMDISPLAY and XPDMSELECTION.

All environment variables are re-read each time XpGetAuthParams is called.

Functional specification

55
CDE/Motif PST

CDEnext

ERRORS/WARNINGS

SEE ALSO

2.26 XpSendAuth

2.26.1 Short Description

A standard convenience function to select and send display-connection authorization information in accordance
with the PDM Selection Protocol

2.26.2 Long Description
NAME

XpSendAuth - select and send display-connection authorization information in accordance with the PDM
Selection Protocol

SYNOPSIS

#include <X11/extensions/Print.h>

Status XpSendAuth (
Display *display,
Window window)

ARGUMENTS

display Specifies a pointer to the print Display structure; returned from
XOpenDisplay on the Selection Print Server.

window Specifies the “mailbox window” as described in the PDM Selection
Protocol for the PDM_MBOX target.

RETURN VALUE

NULL status if an error occured, non-NULL otherwise.

DESCRIPTION

XpSendAuth is a convenience routine that determines what display-connection authorization information
needs to be sent to a PDM, and sends it. Programmers can write their own code to figure out what
information needs to be sent, and then call XpSendOneTicket, or can simply call XpSendAuth and
let Xp do the right thing. See XpGetAuthParams for the necessary setup details.

XpSendAuth considers authorization information in a .Xauthority style file pointed to by the
environment variable XPDMXAUTHORITY. Any and all authorization information in the file may be
sent to the PDM by the time XpSendAuth returns. Users can set XPDMXAUTHORITY to be the same

Functional specification

56
CDE/Motif PST

CD
En

ex
t

as the XAUTHORITY environment variable, or may wish to manage a separate subset authority file for
printing purposes. If XPDMXAUTHORITY is not set, XpSendAuth does nothing and returns
immediately.

If NULL is returned by XpSendAuth, then an error occured.

ENVIRONMENT VARIABLES

ERRORS/WARNINGS

SEE ALSO

2.27 XpSendOneTicket

2.27.1 Short Description

A standard convenience function to send one authorization ticket in accordance with the PDM Selection Protocol

2.27.2 Long Description
NAME

XpSendOneTicket - send one authorization ticket in accordance with the PDM Selection Protocol

SYNOPSIS

#include <X11/extensions/Print.h>
#include <X11/Xauth.h>

Status XpSendOneTicket (
Display *display,
Window window,
Xauth ticket,
Bool more)

ARGUMENTS

display Specifies a pointer to the print Display structure; returned from
XOpenDisplay on the Selection Print Server.

window Specifies the “mailbox window” as described in the PDM Selection
Protocol for the PDM_MBOX target.

ticket The ticket to be sent. If NULL, a null ticket is sent.

more A boolean indicating if more tickets will follow (True), or if this is the last
ticket to be sent (False).

Functional specification

57
CDE/Motif PST

CDEnext

RETURN VALUE

NULL status if an error occured, non-NULL otherwise.

DESCRIPTION

XpSendOneTicket is a convenience routine used to send one display-connection authorization ticket to
the PDM per the “PDM Selection Protocol”. The ticket is decomposed as necessary, and
ClientMessages are generated. See XpGetAuthParams for more details.

If NULL is returned by XpSendOneTicket, then an error occured.

ENVIRONMENT VARIABLES

ERRORS/WARNINGS

SEE ALSO

2.28 XpSetLocaleHinter & XpGetLocaleHinter

2.28.1 Short Description

Set and get the “locale hinter” function used by several Xp calls.

2.28.2 Long Description
NAME

XpSetLocaleHinter - set a “locale hinter” function and description of it

XpGetLocaleHinter - get a pointer to and description of the current “locale hinter” function

SYNOPSIS

#include <X11/extensions/Print.h>

XpSetLocaleHinter(
XPHinterProc hinter_proc,
char *hinter_desc)

char *XpGetLocaleHinter(
XPHinterProc *hinter_proc)

ARGUMENTS

hinter_proc A pointer to a “hinter proc”.

hinter_desc A pointer to contextual information about the locale hinter proc.

Functional specification

58
CDE/Motif PST

CD
En

ex
t

RETURN VALUE

(XpSetLocaleHinter) None.

(XpGetLocaleHinter) The contextual information for the currently installed hinter.

DESCRIPTION

Since (to date) there is no single industry standard for locale values, locale information about the current
client required by XpCreateContext, XpGetPrinterList and XpGetPdmStartParams is at
best considered a “hint” when transmitted to the X Print Server and PDM. In single vendor environments,
the locale hint should be consistent and understood. In multi-vendor environments however, the locale hint
may or may not be understood. The caller locale will be used as the fallback default.

XpSetLocaleHinter and XpGetLocaleHinter access hooks that are used register more advanced
hint generators. By default, Xp uses a hinter proc that calls setlocale(3C) on the CTYPE category on
POSIX systems, and hinter_desc is NULL.

XpSetLocaleHinter sets the hinter_proc and hinter_desc which will be subsequently used
by the Xp calls requiring a locale hint (see above). hinter_proc is the function that will generate the
locale hint (for example, “C”), and hinter_desc is a string, with or without the embeddable keyword
%locale%, that provides a higher level context for the results of hinter_proc.

If hinter_proc is set to NULL, then the default Xp hinter proc is installed. XpSetLocaleHinter
makes its own private copy of hinter_desc prior to returning.

An example set call might look as follows:

XpSetLocaleHinter(my_hinter, “%locale%;CDElocale”);

Where my_hinter might look as follows:

char *my_hinter()
{
 /*
 * Use setlocale() to retrieve the current locale.
 */
 return(my_x_strdup(setlocale(LC_CTYPE, (char *) NULL)));
}

The signature for hinter_proc is defined in <X11/extensions/Print.h> as follows:

typedef char * (*XPHinterProc)();

hinter_proc is expected to return a string that can be freed using XFree(3C)by the Xp calls
themselves.

XpGetLocaleHinter gets the currently installed hinter_proc and hinter_desc. The caller is
expected to XFree(3C) the returned hinter_desc.

If both hinter_desc and the results of hinter_proc are non-NULL, and the keyword %locale% is
found in hinter_desc, then the keyword will be replaced with the result of hinter_proc. The
resulting string will be used as the locale hint by the Xp calls.

Functional specification

59
CDE/Motif PST

CDEnext

If both hinter_desc and the results of hinter_proc are non-NULL, but the keyword %locale% is
not found in hinter_desc, then hinter_desc, as is, becomes the string used as the locale hint by the
Xp calls.

If one of hinter_desc or the results of hinter_proc is NULL, then the other non-NULL value
becomes the string used as the locale hint by the Xp calls.

If hinter_desc and the results of hinter_proc are NULL, then a NULL (i.e. (char *) NULL)
locale hint is sent by the Xp calls.

The syntax for hinter_desc is a variation of the unadopted X/Open standard for a “String Network
Locale-Specification Syntax” (X/Open, Distributed Internationalization Services, Version 2, 1994
Snapshot). The Xp hinter_desc syntax is:

name_spec[;registry_spec[;ver_spec[;encoding_spec]]]

Some examples include (hinter_desc to left, expanded results to the right):

CFRENCH CFRENCH
%locale% C
%locale%;CDElocale C;CDElocale
%locale%;HP C;HP
%locale%;IBM C;IBM
%locale%;XOPEN;01_11;XFN-001001 de_DE;XOPEN;01_11;XFN-001001

In Xp, the first item is the locale name, followed by progressively more detailed information about the
locale name, with each piece of information separated by a ‘;’.

ERRORS/WARNINGS

None

SEE ALSO

XpCreateContext, XpGetPrinterList, XpGetPdmStartParams, XpNotifyPdm

Functional specification

60
CDE/Motif PST

CD
En

ex
t

PDM SELECTION PROTOCOL

3.1 Overview

3.1.1 Short Description

The “PDM Selection Protocol” is based on ICCCM selections, and allows a client to transmit information and
request that a PDM be started against a Print X-Server and Video X-Server per the information transmitted.

3.1.2 Long Description

For the sake of the following protocol discussion, the term “Selection X-Server“ will be used to denote the X-
Server on which the selection window, selection atom, type atoms and properties exist, and to which the client and
PDM have active display connections for the purposes of communication. The term “Print X-Server” will be used
to denote the X-Server on which printing will take place, and print attributes will be modified. In most cases, the
Selection X-Server will be the same as the Print X-Server. The term “Video X-Server” will be used to denote the X-
Server on which the client and PDM post dialogs to the user.

The PDM is a long lived process that establishes ownership of a well known selection, and responds to conversions
on several target types requested by clients on the selection. The PDM’s primary purpose is to provide dialogs that
allow the user to configure the print options that the client will subsequently use in a printing job.

The client is a process that requests conversions on the well known selection, and its targets, in order to enlist the
help of the PDM.

3.2 Setup of the Protocol

Specifically, the PDM establishes ownership of the well-known PDM_MANAGER selection by making the following
SetSelectionOwner request:

selection PDM_MANAGER

owner a window of the PDM

time something other than CurrentTime

Then the PDM establishes the capability to handle the following selection targets:

PDM_START Used to request that a PDM be started.

PDM_MBOX Used to request that a “mailbox window” be provided, so that Video X-
Server connection authorization information (e.g. magic cookies) can be
subsequently mailed by the client using ClientMessage’s.

TARGETS Used to query the list of supported targets.

MULTIPLE Standard ICCCM capability.

Functional specification

61
CDE/Motif PST

CDEnext

TIMESTAMP Used to query the timestamp that the PDM used to acquire ownership of
the PDM_MANAGER selection.

The client can initiate a conversion on any of the supported targets. The supported targets are described below.

3.3 PDM_START Selection Target

The running of a PDM requires two phases to complete.

Phase 1 involves a SelectionRequest and SelectionNotify on the PDM_START target to start a PDM.
During the SelectionRequest, Video X-Server and Print X-Server connection information is passed to the
PDM in a client-owned property. During the SelectionNotify, PDM startup status is returned in the same
property. For phase 1, the selection window, selection atom, all target atoms, type atoms, property atoms and
property windows are created relative to the Selection X-Server.

Phase 2 involves a ClientMessage to the client carrying shutdown information about the PDM, typically “OK”
or “CANCEL”. For phase 2, all atom values and communication windows are created relative to the Print X-Server.

Phase 1 starts when the client creates the following:

requestor A client owned window that will act as the selection requestor, and will
hold property. This window can be the same as client_window.
Note: when using with the PDM_MBOX target, it is important to use the
same requestor window id.

property A client owned property for the two-way transfer of information as
described in Phase 1 of the protocol.

client_window A client owned window that will live long enough to handle the
ClientMessage describing “OK” or “CANCEL” as described in Phase
2 of the protocol.

Clients wishing to start a PDM can then make the following ConvertSelection request:

display selection_display (may be the same as print_display)

selection PDM_MANAGER

target PDM_START

property property

requestor requestor

time timestamp of the gesture that initiated the ConvertSelection request

The PDM_START target is parameterized, and the property named in the request (property) contains the
following list of information:

video_display representing the display in the form “host:display[.screen]”

video_window representing the window id in the form “0x123”

Functional specification

62
CDE/Motif PST

CD
En

ex
t

print_display representing the display in the form “host:display[.screen]”

print_window representing the window id in the form “0x456”

print_context representing the context id in the form “0x789”

locale representing the locale in the form “C”

XmbTextListToTextProperty with an encoding style of XStdICCTextStyle and a list count of 6 can be
used to generate type (from tp.encoding), format (tp.format), mode (PropModeReplace), data
(tp.value) and nelements (tp.nitems) for property from the above list.

The PDM_START target has side effects. The PDM uses property to inform client of the success or failure of the
PDM_START request. Specifically, property is created with type (XA_ATOM), format (32), mode
(PropModeReplace), data (XInternAtom of below) and nelements (1).

The following are the name strings for the atom values used for data:

PDM_START_OK The PDM was successfully started.

PDM_START_VXAUTH The PDM was not authorized to connect to the Video X-Server specified.

PDM_START_PXAUTH The PDM was not authorized to connect to the Print X-Server specified.
 This can happen if 1) the Print X-Server is different than the Selection
 X-Server, or 2) the Print and Selection X-Server are the same, and the
 authorization has been withdrawn since the time that the PDM made
 its initial connection to the Print X-Server.

PDM_START_ERROR The PDM encountered an error. If the PDM supports logging of
 error messages, an error message could have been logged.

Finally, client should destroy property to indicate a successful ConvertSelection request.

Phase 1 of the PDM Selection Protocol is now complete. Phase 2 is as follows.

When the PDM completes, it informs the client of the user’s choice of “OK” or “CANCEL” via a
ClientMessage. The message type of the ClientMessage is PDM_REPLY, the format is “32” (XA_ATOM),
and xclient.data.l[0] contains an atom value.

The following are the name strings for the atom values used for xclient.data.l[0]:

PDM_EXIT_OK The user’s choice was “OK”. The PDM may or may not have changed
 any printer attributes.

PDM_EXIT_CANCEL The user’s choice was “CANCEL”. The PDM may have momentarily
 changed the printer attributes, but is now claiming to have restored
 them to their pre-convert-selection state.

PDM_EXIT_VXAUTH The PDM was not authorized to connect to the Video X-Server specified.

PDM_EXIT_PXAUTH The PDM was not authorized to connect to the Print X-Server specified.

Functional specification

63
CDE/Motif PST

CDEnext

PDM_EXIT_ERROR The PDM encountered an error. If the PDM supports logging of
 error messages, an error message could have been logged. This
 return code should only be used if the PDM cannot restore the
 printer attributes and return a synthetic PDM_EXIT_CANCEL.

3.4 PDM_MBOX Selection Target

Clients hoping to start a PDM using the PDM_START target may have to first transfer display authorization
information to the PDM, as the PDM will have to establish a display connection on the Video X-Server. Use of this
target requires two phases to complete.

Phase 1 consists of a SelectionRequest and SelectionNotify on the PDM_MBOX target, and results in
the PDM allocating a “mailbox window” for the client. Phase 2 consists of the client using multiple
ClientMessages to “mail” display authorization information (see Xauth(1)) to the mailbox window, thus
transfering to the PDM authorization information that it may need to establish a connection to the Video X-Server.

Phase 1 starts when the client creates the following:

requestor A client owned window that will act as the selection requestor, and will
hold property. This window can be the same as client_window (see
PDM_START target). Note: when using with the PDM_START target, it is
important to use the same requestor window id.

property A client owned property for the return of information as described later.

Clients wishing to acquire a “mailbox window” from the PDM can then make the following
ConvertSelection request:

display selection_display (may be the same as print_display)

selection PDM_MANAGER

target PDM_MBOX

property property

requestor requestor

time timestamp of the gesture that initiated the ConvertSelection request

The PDM_MBOX target has side effects. The PDM creates a mailbox window on the Selection X-Server that the
client can later use to mail (via ClientMessages) display authorization information. The PDM places the mailbox
window id in property. Specifically, property is created with type (XA_WINDOW), format (32), mode
(PropModeReplace), data (Window id) and nelements (1).

Finally, the client should destroy property to indicate a successful ConvertSelection request.

Phase 1 is now complete, and a mailbox window has been acquired. Phase 2 is as follows.

Functional specification

64
CDE/Motif PST

CD
En

ex
t

The client can now send one or more display authorization “tickets” contained in Xauth structures (see
XauReadAuth(1)) - tickets that the PDM can use to establish a connection to the Video X-Server. For each
ticket, a “Ticket Header” ClientMessage is sent followed by one or more “Ticket Content”
ClientMessages. A status flag in the Ticket Header indicates when the transfer of tickets has been or will be
completed (e.g. this is the last ticket).

Note: which tickets need to be transfered is left as an exercise to the client. Savvy clients would use calls such as
XauGetBestAuthByAddr(1) and ideally transfer just the one ticket needed so the PDM can connect to the
Video X-Server. More likely, clients will use calls like XauReadAuth(1) to transfer one-by-one all the possible
tickets, and then let the PDM figure out which one is really needed.

The ClientMessage for the “Ticket Header” is as follows:

type ClientMessage

display selection_display

window mailbox window id from ConvertSelection

message_type atom value for the string “PDM_MAIL”

format 16, which among other things identifies this ClientMessage as a Ticket
Header message.

data.s[0] 0 if this is a NULL and terminating ticket, 1 if this is a non-NULL and
terminating (last) ticket, or 2 if this is a non-NULL ticket and more tickets
will follow.

data.s[1] ticket address_length from Xauth structure.

data.s[2] ticket number_length

data.s[3] ticket name_length

data.s[4] ticket data_length

data.s[5] ticket family

The ClientMessage for the “Ticket Contents” is as follows:

type ClientMessage

display selection_display

window mailbox window id from ConvertSelection

message_type atom value for the string “PDM_MAIL”

format 8, which among other things identifies this ClientMessage as a Ticket
Content message.

data.b the next block of char* data at most 20 bytes in length derived from and
representing the concatination of the ticket’s address (from Xauth
structure), number, name and data.

Functional specification

65
CDE/Motif PST

CDEnext

Since a ClientMessage with format equal 8 can transfer at most 20 bytes, the concatinated data for
address, number, name and data must be incrementally sent over. For example, if address_length,
number_length, name_length and data_length equals 39, then a 20-byte ticket content message would
be sent followed by a 19-byte message.

The transfer of tickets will not be considered complete until a NULL or last ticket has been sent.

3.5 TARGETS Selection Target

Returns a list of atoms that represent the targets for which an attempt to convert the PDM_MANAGER selection will
succeed (barring unforseeable problems such as Alloc errors). This list will include all required atoms.

3.6 MULTIPLE Selection Target

Implements a sequence of SelectionRequest events to be ended with a single SelectionNotify event.

3.7 TIMESTAMP Selection Target

Returns the timestamp that the owner of the PDM_MANAGER selection used to acquire the selection.

Functional specification

66
CDE/Motif PST

CD
En

ex
t

Table 3-1: Print Service Diagram - Processes Involved, “PDM Selection” Protocol, Security Model

client (uid=user)
$(HOME)/.Xauthority

vserver.com MIT-MAGIC-COOKIE-1 ...
pserver.com MIT-MAGIC-COOKIE-1 ...

PDM (uid=daemon)
$(DTPDM)/.Xauthority

vserver.com MIT-MAGIC-COOKIE-1 ...
pserver.com MIT-MAGIC-COOKIE-1 ...

pserver2.com MIT-MAGIC-COOKIE-1 ...

Alternate PDM (uid=daemon)
$(DTPDM)/.Xauthority

vserver.com MIT-MAGIC-COOKIE-1 ...
pserver2.com MIT-MAGIC-COOKIE-1 ...

Print [Selection] X-Server (uid=daemon)
$(XPX)/.Xauthority

pserver.com MIT-MAGIC-COOKIE-1 ...

selection_window

PDM_MANAGER selection atom

PDM_REPLY type atom

Client mbox 1 Client mbox n
• • • • • •

Alt Selection X-Server (uid=daemon)
$(XPX)/.Xauthority

pserver2.com MIT-MAGIC-COOKIE-1 ...

Client mbox 1 Client mbox n
• • • • • •

Video X-Server (uid=user)
$(HOME)/.Xauthority

vserver.com MIT-MAGIC-COOKIE-1 ...
pserver.com MIT-MAGIC-COOKIE-1 ...

client video window

PDM GUI’s

PDM_START property: client to PDM {
 video_display host:display[.screen]
 video_window id as hex string
 print_display host:display[.screen]
 print_window id as hex string
 print_context id as hex string
 locale_hint string
}

PDM_START target atom
PDM_MBOX target atom

PDM_MAIL type atom

requestor_window
property

The “Alternate Selection X-Server” is
a concept in which a PDM from anoth-
er Print X-Server can be borrowed by a
client. Maybe the alternate PDM has
features not found on the clients nor-
mal Print X-Server PDM.

PDM_START property: PDM to client {
 start_code atom value
}

Note: All “selection” communication is done
through the Selection X-Server, but the final
OK/Cancel ClientMessage still goes through
the Print X-Server, hebce the extra arrow.

PDM_MBOX property: PDM to client {
 Window window id
}

client_window
... for OK/CANCEL ...

requestor_window
property

selection_window

PDM_MANAGER selection atom
PDM_START target atom
PDM_MBOX target atom

PDM_MAIL type atom

Functional specification

67
CDE/Motif PST

CDEnext

Functional specification

68
CDE/Motif PST

CD
En

ex
t

69
CDE/Motif PST

CDEnext

XP PRINT SERVICE EXTENSION EVENTS

4.1 Issues

4.2 Overview

The Xp Print Protocol Extension to X introduces several new X events which can be selected using
XpSelectInput, and can be received using the normal X event mechanisms (for example, XNextEvent).

4.3 Xp Print Event Summary

The constants for the Xp Print event masks, types and details are defined in <X11/Print.h>. The structures for
the Xp Print events are described below, and also defined in <X11/Print.h>.

Table 4-1: Xp Print Extension Events

Event Mask for selection Event Type(s) returned Details in Event Struct Event Structure

XPNoEventMask n.a. n.a. n.a.

XPPrintMask XPPrintNotify XPStartPageNotify XPPrintEvent

XPStartDocNotify

XPStartJobNotify

XPEndPageNotify

XPEndDocNotify

XPEndJobNotify

XPAttributeMask XPAttributeNotify XPJobAttr XPAttributeEvent

XPDocAttr

XPPageAttr

XPPrinterAttr

XPServerAttr

Functional specification

70
CDE/Motif PST

CD
En

ex
t

4.4 Xp Print Event Details & Structures

The following describes the Xp Print Events in detail.

4.4.1 XPNoEventMask

When no events are wanted.

4.4.2 XPPrintMask

Asks the Xp Print X-Server to send notice when calls to XpStartPage, XpStartDoc, XpStartJob,
XpEndPage, XpEndDoc and XpEndJob have actually been processed and completed.

typedef struct
{

int type; /* base + XPPrintNotify */
unsigned long serial; /* # of last req processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
XPPrintContext context; /* print context where operation

 was requested */
Bool cancel; /* was detailed event canceled */
int detail; /* XPStartJobNotify, XPEndJobNotify,

 XPStartDocNotify, XPEndDocNotify,
 XPStartPageNotify, XPEndPageNotify */

} XPPrintEvent;

4.4.3 XPAttributeMask

Asks the Xp Print X-Server to send notice when any of the print attribute stores maintained by the Xp Print X-
Server change. The Xp Print X-Server may have initiated the changes to the attributes, or a call to
XpSetAttributes may have made the changes.

typedef struct
{

int type; /* base + XPAttributeNotify */
unsigned long serial; /* # of last req processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
XPPrintContext context; /* print context where operation

 was requested */
int detail; /* XPJobAttr, XPDocAttr, XPPageAttr,

 XPPrinterAttr, XPServerAttr */
} XPAttributeEvent;

Functional specification

71
CDE/Motif PST

CDEnext

4.5 Receiving Xp Print Events

As with all X extensions, returned extension event type values are computed relative to some base value. An
example code fragment to decode a Xp Print Extension event is as follows:

XEvent event;
int event_base, error_base;

/*
 * fetch an event
 */
XNextEvent(ptr_dpy, &event);

/*
 * fetch the offsets for the Xp Print Extension
 */
XpQueryExtension(ptr_dpy, &event_base, &error_base);

/*
 * decode
 */
switch(event.type - event_base) {

case XPPrintNotify: /* handler */
break;

case XPAttributeNotify: /* handler */
break;

}

Functional specification

72
CDE/Motif PST

CD
En

ex
t

73
CDE/Motif PST

CDEnext

DT PRINT DIALOG MANAGER

5.1 Overview

PURPOSE

A Print Dialog Manager (PDM) is a process separate from the X Print Server and X Printing Application
that provides printer-specific and spooler-specific setup GUIs. An application could choose to understand
and display such GUIs itself, but is advised to offload the task to a PDM so that new printers and spoolers
can be supported by providing new PDMs, rather than requiring changes to all applications.

Within the X Print Service, a standard “Print Dialog Manager Selection Protocol” is described in the
functional specification for XpNotifyPdm. This protocol allows an X Printing Application to engage a
PDM.

This chapter describes the CDEnext implementation of a PDM that uses the PDM Selection Protocol. The
CDEnext implementation involves a Print Dialog Manager Daemon (PDMD) executable dtpdmd which is
initially engaged by the protocol, and it then determines which PDM is needed and starts it on behalf of the
application. Within CDEnext, the executable dtpdm is the general purpose PDM that the dtpdmd can start.

Printer Vendors can choose to introduce new GUIs by: 1) developing their own PDM implementation that
conforms to the PDM Selection Protocol, or 2) develop a PDM that can be started by the dtpdmd, or 3)
possibly (is vendor dependent) integrate new shared or dynamic libraries into the dtpdmd. We recommend
approach #2.

DESCRIPTION

The dtpdm executable implements a reasonably general-purpose print dialog manager capable of providing
dialogs suitable for a number of different printers, but specifically tuned to the needs of the two reference
printers, the PCL based HP DeskJet 1600C, and the Postscript based Sun SPARCprinter 2. The dtpdm uses
the attributes (see XpSetAttributes) of the particular printer to provide a limited amount of automatic
configuration of the options displayed in its printer setup dialog. The dtpdm’s job setup dialog is designed
for use with the lp spooler.

The dtpdmd executable implements a PDM startup mechanism. This two-layer mechanism means that the
PDM Selection Protocol, PDM selection and startup, and security concerns can be delt with by the dtpdmd,
and that resulting PDMs called by the dtpdmd are left with the minimal and simple task of displaying GUIs.

Functional specification

74
CDE/Motif PST

CD
En

ex
t

5.2 Dt Print Dialog Manager Daemon - dtpdmd

5.2.1 Short description

A daemon process that uses the Print Dialog Manager Selection Protocol to start Print Dialog Managers.

5.2.2 Long description
NAME

dtpdmd - a daemon process that uses the PDM Selection Protocol to start PDMs.

SYNOPSIS

dtpdmd [options]

OPTIONS

-d display Specifies the display connection to an X-Server upon which an X-selection will be
created and managed for requests. If specified, it overrides the environment variable
XPDMDISPLAY.

-a selection Specifies an alternate X-selection name for the dtpdmd to create and manage. If
specified, it overrides the environment variable XPDMSELECTION. By default, the
selection name is PDM_MANAGER.

-p pdm Specifies an alternate PDM execution string to use if no other PDM execution string can
be derived, usually from the Server Attribute dt-pdm-command from the X-Server.
By default, the execution string is “dtpdm”. All execution strings are applied against
the current search path.

-P pdm Specifies an alternate PDM execution string that overrides all other sources of such
execution strings. All execution strings are applied against the current search path.

-s Specifies that the dtpdmd should turn on the security exchange portion of the PDM
Selection Protocol. By default, the dtpdmd will not exchange security information with
an application over the wire, so the appearance of “auto hosting” cannot be done.

-l logfile Specifies a file for the logging of errors and warnings. Entires are time-stamped and may
be generated by the dtpdmd or any child PDM via stderr. The previous contents of the
log file are destroyed. By default, /dev/null is used.

DESCRIPTION

The dtpdmd is a long-lived daemon process that receives client requests for a PDM, uses some lookup
rules, and then starts an appropriate PDM to service the request. When the PDM finishes, control is
returned to the dtpdmd, and the dtpdmd in turn responds to the client with final status.

The dtpdmd uses the following “PDMD/PDM Protocol” to communicate with the PDM. Communication
“to” the PDM is done via a standardized command line and environment. Communication “from” the
PDM is done via standardized exit codes.

Functional specification

75
CDE/Motif PST

CDEnext

PDMD/PDM Protocol

SYNOPSIS
dt-pdm-command [dt-pdm-options] -vdisplay vdpy -window vwid
 -pdisplay pdpy -pcontext pcid

OPTIONS
dt-pdm-command This pdm executable path is derived by the dtpdmd from either the -p or -P

options.

dt-pdm-options These options may have accompanied the dt-pdm-command, whether
specified from the dtpdmd command line by the -p or -P options, or from
other sources.

-display vdpy Specifies the display connection to the Video X-Server.

-window vwid Specifies the window id on the Video X-Server to which the pdm’s dialogs
should be posted as transient windows.

-pdisplay pdpy Specifies the display connection to the Print X-Server.

-pcontext pcid Specifies the print context id on the Print X-Server. Used by the pdm to
gain access to the same print context as the requesting application.

ENVIRONMENT
Prior to starting a PDM, the dtpdmd may first modify the following environment variables:

XAUTHORITY If the dtpdmd has come into possession of x-authority information that the
PDM will need, the dtpdmd will set the XAUTHORITY environment
variable so that the PDM will automatically have access to the proper x-
authority information.

In addition, the dtpdmd may set a “locale hint” passed to it by the “PDM Selection Protocol” from the
client prior to starting a PDM. On POSIX systems, setlocale(3C) will be used.

RETURN VALUES
The following integer constants are defined in <Dt/dtpdmd.h>:

PDM_EXIT_OK The PDM is telling the PDMD that the user selected “OK” to dismiss the
PDM.

PDM_EXIT_CANCEL The PDM is telling the PDMD that the user selected “CANCEL” to dismiss
the PDM.

PDM_EXIT_VXAUTH The PDM is telling the PDMD that it did not have proper authority to make
a display connection on the Video X-Server.

PDM_EXIT_PXAUTH The PDM is telling the PDMD that it did not have proper authority to make
a display connection to the Print X-Server.

PDM_EXIT_ERROR The PDM is telling the PDMD that it encountered an error.

Functional specification

76
CDE/Motif PST

CD
En

ex
t

all other values All unknown return values, likely from uncontrolable exit conditions often
found in other libraries (e.g. untrapped XIO errors from libX), will be
equated by the PDMD to be the same as PDM_EXIT_ERROR.

The constant definitions in <Dt/dtpdmd.h> are as follows:

#define PDM_EXIT_OK 191 /* “OK” */
#define PDM_EXIT_CANCEL 192 /* “CANCEL” */
#define PDM_EXIT_VXAUTH 193 /* no print display authorization */
#define PDM_EXIT_PXAUTH 194 /* no video display authorization */
#define PDM_EXIT_ERROR 195 /* all other error reasons */

RETURN VALUES

ENVIRONMENT

FILES

SEE ALSO

Functional specification

77
CDE/Motif PST

CDEnext

5.3 Dt Print Dialog Manager

5.3.1 Short description
The dialog manager is a process separate from the print server. Its provides the printer-specific GUIs on
behalf of a printing application

5.3.2 Long description
NAME

dtpdm - program invoked by dtpdmd to provide printer-specific GUIs.

SYNOPSIS

dtpdm [options]

OPTIONS

-display vdpy Specifies the display connection to the Video X-Server.

-window vwid Specifies the window id on the Video X-Server to which the pdm’s dialogs
should be posted as transient windows.

-pdisplay vdpy Specifies the display connection to the Print X-Server.

-pcontext pcid Specifies the print context id on the Print X-Server. Used by the pdm to
gain access to the same print context as the requesting application.

DESCRIPTION

At an application’s request dtpdm will post to the user’s display a set of printer-specific dialogs enabling
the user to configure a variety of printer options.

The dtpdm program provides a setup dialog to X printing applications that allows the user to set printer
specific, and job specific options. Though the setup dialog will appear to be part of the application, it is
actually managed by the dtpdm program on behalf of the application. It is capable of providing dialogs in
all locales for which there exist applicable message catalogs.

dtpdm presents a dialog containing the printer name and description plus an XmNotebook widget. This
notebook widget contains two tabs: one for the Printer Setup Box and one for the Job Setup Box. Each of
these boxes provide controls that allow for configuration of various printing options. The dtpdm dialog also
contains three pushbuttons labelled: “OK”, “Cancel”, and “Help”. When the OK button is activated the
dialog is dismissed and the newly configured printing options are set in the current print context (via
XpSetAttributes). When the Cancel button is activated the dialog is dismissed and no changes are
made to the print context.

The next two sections describe the setup boxes in greater detail.

Functional specification

78
CDE/Motif PST

CD
En

ex
t

Printer Setup Box
The Printer Setup box presents options specific to the currently selected printer. The options presented may
vary in other PDM implementations. The following explains the printer setup options presented by dtpdm.

Figure 5-1. Printer Setup Box

Printer Information
This section of the setup box presents information about the X Printer. The information
fields presented are the printer model and the document format used to generate
documents sent to this X Printer.

Page Orientation
This options menu allows the user to select how the output will be oriented on the page.
The orientation options presented in the menu depend on the printer, but up to four
orientations are possible: portrait, landscape, reverse portrait and reverse landscape. An
icon adjacent to the options menu is provided. This icon will present a graphical
illustration appropriate for the current menu selection.

Printed Sides
This options menu allows the user to select single or double-sided printing. The actual
choices available depend on the printer, but up to three choices are possible: simplex,
duplex, and tumble. An icon adjacent to the options menu is provided. This icon will
present a graphical illustration appropriate for the current menu selection.

Functional specification

79
CDE/Motif PST

CDEnext

Tray
This options menu allows the user to select which printer tray the media will be drawn
from. The “Auto-select” tray option will be presented for all printers. Selecting this
option indicates that the user has no preference as to which tray to use. Remaining entry
possibilities are dependent on the printer.

Page Size
This list box allows the user to select the media size for printing. The entries presented in
this list depend on the whether the “Loaded in Printer” or “All Sizes” radio button is
selected.

Loaded in Printer
The user selects the “Loaded in Printer” radio button to view the media sizes currently
available on the printer. If the current “Media Source” option is “Auto-select”, the user
will see all media sizes available in all of the printer’s trays. If a specific tray is selected,
only the media size loaded in that tray will be presented. Information on which media
size is available in which tray is provided by the system administrator via the input-
trays-medium attribute. If the system administrator does not provide this
information, the “Loaded in Printer” radio button will be inactive.

All Sizes
The user selects the “All Sizes” radio button to view all supported media sizes available
for the printer. When this button is selected, the Media Source options menu will contain
only the “Auto-select” option. This button is provided for the following situations:

u in case the system administrator has not specified which sizes are loaded in the printer
u if a desired media size is not loaded, some printers can prompt for the requested size
u printing to a file, where the output may in fact never reach an actual printer

Functional specification

80
CDE/Motif PST

CD
En

ex
t

Job Setup Box
The Job Setup box presents options specific to the spooler controlling the printer. The options presented
may vary depending on the spooler in other PDM implementations. The following explains the job setup
options presented by dtpdm.

Figure 5-2. Job Setup Box

Send Mail When Done
When selected, an email message will be sent to the user from the spooler when the job
is completed.

Banner
A text field into which the user can enter text which will appear on the banner page of
the output.

Options A text field into which the user can specify command line options and arguments that
will be included in the command line used to invoke the spooler. No parsing of this field
will be performed, and what are considered valid arguments is dependent entirely upon
the underlying spooler.

Functional specification

81
CDE/Motif PST

CDEnext

STARTUP

The print dialog manager is started by the print dialog manager daemon, dtpdmd.

ENVIRONMENT

The Dt Print Dialog Manager uses the environment variable LANG to specify the location of its localized
message file.

RETURN VALUES

The following integer constants are defined in <Dt/dtpdmd.h>:

PDM_EXIT_OK The PDM is telling the PDMD that the user selected “OK” to dismiss the
PDM.

PDM_EXIT_CANCEL The PDM is telling the PDMD that the user selected “CANCEL” to dismiss
the PDM.

PDM_EXIT_VXAUTH The PDM is telling the PDMD that it did not have proper authority to make
a display connection on the Video X-Server.

PDM_EXIT_PXAUTH The PDM is telling the PDMD that it did not have proper authority to make
a display connection to the Print X-Server.

PDM_EXIT_ERROR The PDM is telling the PDMD that it encountered an error.

all other values All unknown return values, likely from uncontrolable exit conditions often
found in other libraries (e.g. untrapped XIO errors from libX), will be
equated by the PDMD to be the same as PDM_EXIT_ERROR.

See the dtpdmd specification for additional information.

Functional specification

82
CDE/Motif PST

CD
En

ex
t

83
CDE/Motif PST

CDEnext

X PRINT CONFIGURATION DATABASES

6.1 Configuration Files Overview

Configuration files provide the raw information that is used by the X Print Service components. Strictly speaking,
the configuration files, print dialog manager, and ddx drivers of the print server form a matched set. The
configuration files, though, have been designed to be as flexible as possible.

PURPOSE

Provide configuration information for X Print Service components.

DESCRIPTION

Most of the configuration files are in the form of an XRM resource file. This provides maximum flexibility.
The hierarchical nature of the data base avoids name clashes and wild cards can be used to signify that
certain characteristics apply to many printers. Also, additional attributes can be added later.

This rest of this chapter will document the configuration directories and files used by the X Print Service.

$XPCONFIGDIR is an environment variable read by the X print server, that defines the root of the
configuration directory hierarchy. If $XPCONFIGDIR is not defined, the server will default to <XRoot>/
lib/X11, where <XRoot> is the root of the X11 install tree. Determining configuration values is
performed as follows:

1. Search $XPCONFIGDIR/C/print to obtain default values from a configuration file.

2. If the configuration file is not found, server-defined defaults will be used.

3. For locales other than C, search $XPCONFIGDIR/$LANG/print and use the configuration
file values to augment the defaults determined above.

One exception to this is the Xprinters file. This file indicates which printers will be managed by the X
Print Server. The path and name of this file is indicated by the -XpFile command line option defined by
the X Print Server. If the command line option is not present, the X Server will default to
$XPCONFIGDIR/C/print/Xprinters. This file is optional.

There are several types of configuration files. Within several subdirectories:

u A file that indicates which printers will be managed by the X Print Server. This file is referred to
as the Xprinters file.

u Printer attributes files that define the capabilities of the printer model. The name of the file is
typically all uppercase, and consists of the manufacturer and the model of printer. Examples of
file names are: HPDJ1600C, IBM-4039-16l, and SUN-NP20.

Functional specification

84
CDE/Motif PST

CD
En

ex
t

u Printer attribute files that define the capabilities of printers installed on a particular X Print Server.
u Job and document attribute files that specify initial values for the print operation.
u Optional ddx driver configuration files. The format of each file is internal to the corresponding

ddx driver.
The encoding for most of the configuration files documented in this chapter is Compound Text as defined
by the X Window System. The only exception is the optional ddx driver configuration files. These files are
defined at the discretion of the driver developer.

6.2 Configuration Directories

6.2.1 Print Configuration Directory

Figure 6-1. Example Print Configuration Directory

The X Print Service configuration directory is assumed to be /usr/lib/X11/C/print for the purposes of this
discussion. The configuration files will in actual use be distributed throughout the configuration hierarchy, as
described in the “Configuration Files Overview” section.

At the top level of the locale specific print directory, three subdirectories are defined. The ddx-config
directory contains configuration information specific to X Print Server ddx drivers. The models directory defines
default attributes and internal font metrics for various models of printers. The attributes directory defines
attributes for the various X Printers defined on the host system. The following sections describe these directories in
more detail.

Functional specification

85
CDE/Motif PST

CDEnext

6.2.2 Printer Model Configuration Directories

Figure 6-1. Example X Printer models Directory

The models directory contains subdirectories that define configuration information for various models of printers.
Each subdirectory corresponds to a specific printer model or a specific class of printer models. The names of these
model directories define valid values for the xp-model-identifier attribute in the printer attributes file. See
the “Printer Attribute Definitions” section in the “X Print Service Attributes” chapter for more information on this
attribute.

It is recommended that only uppercase characters be used for the names of model configuration directories. This
will help avoid namespace collisions between model names and printer names, when these names are used as
qualifiers in the attributes files. See the “Printer Attributes File”, “Document Attributes File”, and the “Job
Attributes File” sections in this chapter for information on the format of these files.

Figure 6-2. Example Printer Model Configuration Directory

Functional specification

86
CDE/Motif PST

CD
En

ex
t

The printer model configuration directory contains a model-config file and a fonts directory. The
model-config file defines a set of default attributes for a specific printer model or a specific class of printer
models. See the “Printer Model Attributes File” section for details on the format of this file.

The fonts directory defines font metrics for the printer’s internal fonts. If any fonts are defined under a locale-
specific subdirectory, they obscure all fonts defined under the default C locale subdirectory.

Figure 6-3. Example X Printer Internal Fonts Directory

The fonts directory is read by the X Print Server. See the “Fonts” chapter for more information.

6.2.3 Printing Attributes Configuration Directory

Figure 6-1.Printing Attributes Configuration Directory

The files in the attributes directory contain initial values for the X Print Service attributes. These attributes
define print setup options (document and job) and provide printer capabilities (printer). See the “Printer
Attributes File”, “Document Attributes File”, and the “Job Attributes File” sections in this chapter for information
on the format of these files.

Functional specification

87
CDE/Motif PST

CDEnext

6.2.4 ddx Driver Configuration Directories

Figure 6-1. Example ddx-config Directory

The ddx-config directory contains ddx driver configuration directories. A ddx driver may or may not require
one of these directories. The contents of each directory is specific to the corresponding driver. The name of the
directory is the same as the driver name provided by the ddx driver to the X Print Server, and is also used as the
value of the xp-ddx-identifier printer attribute.

Figure 6-2. shows an example of the ddx driver configuration directory for the raster driver.

Figure 6-2. Example ddx Driver Configuration Directory

Driver configuration files in this directory may be assigned on a per-printer basis by using the xp-ddx-config-
file-name printer attribute. Whether or not this attribute is utilized is determined by each individual driver.

Functional specification

88
CDE/Motif PST

CD
En

ex
t

6.3 Xprinters File

NAME

Xprinters file - identify printers to be managed by an X Print Server

DESCRIPTION

The Xprinters file is read by an X Print Server during initialization in order to determine which printers
it will manage.

Lines in the file consist of a keyword followed by a value. Keyword recognition is case-sensitive. Any data
following the comment character “#” on a given line is ignored.

The encoding for the Xprinters file is Compound Text as defined by the X Window System.

KEYWORDS

Augment_Printer_List
This keyword is used to generate a list of printer names that will be added to the list of
printers the server will manage. If this line is not specified, or if the Xprinters file does
not exist, the server will generate a list of printers by utilizing the output of lpstat(1).

Predefined values for the Augment_Printer_List keyword are:

%default% Explictly invoke the default behavior, i.e. augment the list of printers by
utilizing the output of lpstat(1).

%none% Do not augment the list of printers. This provides a way to override the
default behavior of calling lpstat(1) when no Augment_Printer_List
line is present.

In addition, the value may be specified as a POSIX shell command pipeline that
generates a list of printers on stdout. This generated list is added to the list of printers
managed by the server.

Printer
A whitespace delimited list of one or more printer names to add to the list of printers
managed by the server.

Map
The attributes configuration files utilize a printer qualifier, defined by the X Print Server,
that is the printer name by default, provided the characters comprising the printer name
conform to the restricted set of characters allowed for the printer qualifier, that is, the set
of characters allowed for Xrm resource names. The Map keyword is provided to allow
specification of a printer qualifier when a default printer qualifier is not generated by the
server, or if an override of the default qualifier is desired.

The Map value is of the form <printer name> <printer qualifier>, for example:

Map könig koenig

Functional specification

89
CDE/Motif PST

CDEnext

EXAMPLE

##
#
Xprinters sample configuration file
#
The Xprinters file is read by an X Print Server during initialization in
order to determine which printers it will manage. The actual file name and
path is given to the X Print Server via the -XpFile command
line option.
##

##
Use lpstat to augment the list of printers managed by the
server. (This is the default behavior if the Xprinters file is
not specified, or if an “Augment_Printer_List” line is not specified.)
##
Augment_Printer_List %default%

##
Use the specified command pipeline to augment the list of printers
managed by the server.
##
#Augment_Printer_List lpstat -a | cut -d “ “ -f 1 #equivalent to default

##
Do not augment the list of printers managed by the server.
##
#Augment_Printer_List %none%

##
Add individual printers to the list of printers managed by the
server.
##
#Printer laser_1 laser_2 laser_c4
#Printer deskJet_1 deskJet_2
#Printer xpress

##
Provide printer qualifiers for non-conforming printer names
##
Map könig koenig

SEE ALSO

u lpstat(1)

Functional specification

90
CDE/Motif PST

CD
En

ex
t

6.4 Printer Model Attributes File

NAME

printer model attributes file - printer model capabilities

DESCRIPTION

The printer model attributes file consists of printer attributes for a specific printer model or a specific class
of printer models. This file is delivered by a printer vendor or ddx printer driver developer in order to
provide default configuration information for a printer.

Valid attributes are based on a subset of the POSIX 1387.4 Printer Object attribute definitions (note: the X
Print Service is not an implementation of POSIX 1387.4). See the “Printer Attribute Definitions” section in
the “X Print Service Attributes” chapter for the complete list.

The encoding for the printer model attributes file is Compound Text as defined by the X Window System.

Attribute names must be qualified using either the xp-model-identifier or an asterisk (*). For
example, if HPDJ1600C is the xp-model-identifier, then to initialize the plexes-supported
attribute to simplex, use: HPDJ1600C.plexes-supported: simplex. For the asterisk, use:
*.plexes-supported: simplex. If the same attribute is specified using each method, the xp-
model-identifier qualified entry takes precedence.

EXAMPLE

! This is the configuration file for the HP DeskJet 1600C printer.
! It is designed for use with the CDEnext Sample Implementation
! PCL, raster drivers, and print dialog manager.

HPDJ1600C.printer-model: Hewlett-Packard DeskJet 1600C
HPDJ1600C.descriptor: Hewlett-Packard DeskJet 1600C
HPDJ1600C.printer-resolutions-supported: 300
HPDJ1600C.content-orientations-supported: portrait landscape
HPDJ1600C.document-formats-supported: {PCL 5}
HPDJ1600C.plexes-supported: simplex
HPDJ1600C.xp-ddx-identifier: XP-PCL
HPDJ1600C.xp-embedded-formats-supported: {PCL 5} {HPGL 2}
HPDJ1600C.dt-pdm-command: dtpdm

! na-letter, iso-a4, na-legal, na-number-10-envelope, more?
! assumes 1/4” unprintable margins for all media
HPDJ1600C.medium-source-sizes-supported: \
{‘’ \
{na-letter FALSE {6.35 209.55 6.35 273.05}} \

 {iso-a4 FALSE {6.35 203.65 6.35 290.65}} \
 {na-legal FALSE {6.35 209.55 6.35 349.25}} \
 {na-number-10-envelope FALSE {6.35 222.25 6.35 98.425}} \
}

Functional specification

91
CDE/Motif PST

CDEnext

SEE ALSO

u The “Printer Attributes File” section in this chapter.
u The “Printer Attribute Definitions” section in the “X Print Service Attributes” chapter.

Functional specification

92
CDE/Motif PST

CD
En

ex
t

6.5 Printer Attributes File

NAME

printer attributes file - printer configuration

DESCRIPTION

The printer attributes file identifies capabilities and defaults for an X printer on the host system. This file is
defined by the system administrator. Definitions in this file override attributes defined in the Printer Model
Attributes file.

Valid attributes are based on a subset of the POSIX 1387.4 Printer Object attribute definitions. See the
“Printer Attribute Definitions” section in the “X Print Service Attributes” chapter for the complete list.

The encoding for the printer attributes file is Compound Text as defined by the X Window System.

Attribute names must be qualified by using one of the following (listed in order of precedence):

printer qualifier Set this attribute for the printer indicated by the printer qualifier. The set of
valid printer qualifiers is defined as the list of printer qualifiers managed by
the X Print Server (the server typically generates this list by reading the
Xprinters file).

Example: dj_1.document-formats-ready: {PCL 5}

xp-model-identifier
Set this attribute for all printers of a specific model.

Example: HPDJ1600C.document-formats-ready: {PCL 5}

* Set this attribute for all printers.

Example: *.document-formats-ready: {PCL 5}

EXAMPLE

*.xp-model-identifier: HPLJ4SI

HPDJ1600C.input-trays-medium: { main na-letter }

deskJet_1.descriptor: DeskJet 1600C in Bob’s Cubicle
deskJet_1.xp-model-identifier: HPDJ1600C

laser_1.descriptor: 4si in Brock’s Bay
laser_1.input-trays-medium: {top na-letter} {bottom na-legal} \
 {large-capacity na-letter}
laser_2.descriptor: laserjet in test area
laser_2.plexes-supported: simplex
laser_2.input-trays-medium: {top iso-a4} {bottom iso-a4}

Functional specification

93
CDE/Motif PST

CDEnext

SEE ALSO

u The “Printer Model Attributes File” section in this chapter.
u The “Printer Attribute Definitions” section in the “X Print Service Attributes” chapter.

Functional specification

94
CDE/Motif PST

CD
En

ex
t

6.6 Job Attributes File

NAME

job attributes file - print job initial values

DESCRIPTION

The encoding for the job attributes file is Compound Text as defined by the X Window System.

Attribute names must be qualified by using one of the following (listed in order of precedence):

printer qualifier Set this attribute for the printer indicated by the printer qualifier. The set of
valid printer qualifiers is defined as the list of printer qualifiers managed by
the X Print Server (the server typically generates this list by reading the
Xprinters file).

Example: laser_1.job-name: Payroll Reports

xp-model-identifier
Set this attribute for all printers of a specific model.

Example: HPDJ1600C.job-name: Payroll Reports

*
Set this attribute for all printers.

Example: *.job-name: Payroll Reports

EXAMPLE

! defaults
*.job-name:
*.notification-profile: {}

! Printer laser_1 prints paychecks - always send email on completion
laser_1.notification-profile: {{event-report-job-completed} electronic-mail}
laser_1.job-name: Payroll Reports

Functional specification

95
CDE/Motif PST

CDEnext

6.7 Document Attributes File

NAME

document attributes file - print document initial values

DESCRIPTION

The encoding for the document attributes file is Compound Text as defined by the X Window System.

Attribute names must be qualified by using one of the following (listed in order of precedence):

printer qualifier Set this attribute for the printer indicated by the printer qualifier. The set of
valid printer qualifiers is defined as the list of printer qualifiers managed by
the X Print Server (the server typically generates this list by reading the
Xprinters file).

Example: dj_1.plex: duplex

xp-model-identifier
Set this attribute for all printers of a specific model.

Example: HPDJ1600C.plex: duplex

* Set this attribute for all printers.

Example: *.plex: duplex

EXAMPLE

*.default-input-tray: top
*.default-printer-resoution: 300
*.plex: duplex
*.content-orientation: portrait
*.copy-count: 1
*.document-format: {PCL 5}
HPLJ4SI.default-printer-resolution: 600
printer_1.default-input-tray: large-capacity
deskJet_1.plex: simplex

Functional specification

96
CDE/Motif PST

CD
En

ex
t

6.8 ddx Driver Configuration Files

NAME

ddx configuration file - ddx driver defined configuration

DESCRIPTION

The ddx configuration file is defined at the discretion of the ddx driver developer. The format of the
information defined in the file is internal to the ddx driver. The developer may choose to publish the format
of this file to allow for customization by system administrators.

EXAMPLES

The Raster driver supplied with the X Print Service utilizes a ddx configuration file. Here is an example of
how it is defined:

! Raster ddx print driver configuration file
*PageCommand: command -o option

SEE ALSO

u The “X Print Driver Interface” chapter.

97
CDE/Motif PST

CDEnext

X PRINT SERVICE ATTRIBUTES

7.1 Overview

Printing-specific attributes play a key role in the X Print Service. They provide a general-purpose mechanism for
storing information associated with printing. This information includes user print setup options and printer
capabilities.

PURPOSE

Convey capabilities of print servers and printers, and options for print jobs and documents.

DESCRIPTION

The X Print Service selects attributes in a way that is consistent with X Windows, ISO/IEC 10175 (ISO
DPA), and POSIX 1387.4 print standards (note: the X Print Service is not an implemention of the ISO
DPA or POSIX 1387.4).

Applications typically will not have to deal with these attributes. The primary use of the attributes is for
communication between the Print Dialog Manager and the printer ddx drivers. Generally, only applications
that present their own job and printer setup dialogs will need to examine attribute information.

The initial values of X Print Service attributes are specified in the X Print Configuration Files. The
configuration files are read by the X Print Server. The attributes are interpreted by each driver, and for each
printer a set of relevant attributes is maintained. The Print Dialog Manager obtains the attribute set for a
given print context and uses the values to initialize the job and printer setup dialogs. The user interacts
with the dialogs, and sets values for the printing task. The Print Dialog Manager informs the server of the
updated attribute values. When the printing task commences, the printer ddx driver reads the set of values
to determine how it will render the print documents and submit the job.

The ISO DPA defines a number of abstract objects that are managed and manipulated during the printing
process. These are known as DPA-Objects. Each DPA-Object is represented by a set of attributes which
characterize that object. Each attribute in turn is composed of an attribute-type (attribute name) and zero or
more attribute-values.

The X Print Service utilizes selected DPA-Objects, and for each of these, a subset of the associated
attributes. The DPA-Objects used are:

Server Object Specifies attributes defined for the print server.

Job Object Specifies attributes for a single print request as sent to the spooler.

Document Object Specifies attributes used to define a single document within a job. If
supported by the implementation, one or more documents may be
submitted within a given job.

Functional specification

98
CDE/Motif PST

CD
En

ex
t

Printer Object Specifies attributes that identify printer capabilities.

The X Print Service also provides for changing certain document attributes on a page-by-page basis. This
is a capability for which the ISO DPA does not define a separate DPA-Object. This set of attributes is
known within the X Print Service as Page Attributes.

The X Print Service requires some additional attributes that are not defined by the ISO DPA. The attribute
names for these attributes are prefixed with “xp-”. The CDEnext implementation also requires some
additional attributes that are not defined by the ISO DPA. The attribute names for these attributes are
prefixed with “dt-”

This chapter defines the following sets of attributes for the X Print Service:

u Server Attributes
u Printer Attributes
u Job Attributes
u Document Attributes
u Page Attributes

Functional specification

99
CDE/Motif PST

CDEnext

7.2 Attribute Value Defaulting And Validation

This section provides an overview of default attribute values and validation of attribute values within the X Print
Service. Details for individual attributes can be found in the rest of this chapter.

7.2.1 Defaulting Attribute Values

An attribute specification with an empty value shall indicate that the attribute has no value. Within X Print Service
configuration files and attribute pools, an attribute specification that omits the value is effectively treated as if there
is no attribute specification. An empty valued attribute specification that has precedence over a non-empty attribute
specification (for instance, an empty printer qualified attribute over a non-empty model qualified attribute) will
effectively “unset” the lower precedence attribute specification. When a print job commences, the X Print Service
may infer a default value for an attribute that has no value. In some cases the X Print Service may explicitly assign
a default value to an attribute before presenting it in an attribute pool.

The ISO DPA provides for explicitly assigning generic-none to an attribute in order to prevent any action
implied for that attribute; however this implementation of the X Print Service does not recognize generic-none
for any of the attributes it defines.

7.2.2 Validation of Attribute Values

The X Print Server (in conjunction with the print ddx drivers) ensures that attribute pools presented to the client are
always comprised of valid attribute specifications, for attributes defined by the X Print Service. Validation is first
performed when a print context is created for a particular printer. Validation is also performed whenever a client
requests an update to an attribute pool.

Validation involves checking the attribute value against the set of valid values specified for the attribute. Validation
may also take into account the current values of other attributes and the capabilities of the ddx driver.

At print context creation time, if the server determines that an attribute value is invalid, its course of action is
determined based upon whether the attribute has a single value or a multiple value. For single valued attributes the
server will reject the invalid attribute specification, and may decide to set an explicit default for the attribute in the
pool. For multi-valued attributes, the server will reject each value component that is invalid. If all of the specified
components are invalid, the server will reject the attribute specification, and for certain attributes will set an explicit
default for the attribute in the pool.

When the client requests an update to an attribute pool (e.g. when calling XpSetAttributes), if the server
determines that an attribute value is invalid, its course of action is the same as at print context creation time, with
one exception; in the cases where the server would choose to use a default, the server will instead retain the pre-
existing attribute specification found in the pool.

The server will provide log messages when invalid attributes are encountered when constructing an attribute pool.
Print clients will not receive notification of invalid attribute specifications. Interested clients must re-read the
attribute pool to determine if the requested value was accepted by the server.

It is important to note that as part of the validation for a given attribute a ddx driver may choose to alter other
attributes in response to the change. For example one can imagine that changing the value of the document-
format attribute would cause the value of the xp-embedded-formats-supported attribute to change as
well. In spite of the fact that the sample implementation does not do this for any attribute, applications should be
prepared for the value of an attribute to change in response to the changing of some other attribute’s value.

Functional specification

100
CDE/Motif PST

CD
En

ex
t

7.3 Server Attribute Definitions

7.3.1 Description

Server attributes describe the X Print Server. These attributes are created by the X Print Server, and are not defined
in any configuration files, nor are they redefined by the printer ddx drivers. Applications retrieve these attributes
using XpGetAttributes from the X Print Extension API.

The following table shows where querying a server attribute value is supported within the X Print Service.

Table 7-1: Server Attribute Usage

7.3.2 Server Attributes
document-attributes-supported

A list of document attributes supported by the X Print Server. This list is comprised of a
set of whitespace-delimited attribute names.

The list of document attributes shall include only attributes that are handled by the X
Print Server. The full set of supported document attributes for a given printer is
determined by the printer ddx driver. The driver augments the value of this server
attribute, and presents the full set of supported document attributes as the value of the
Printer object document-attributes-supported attribute. As such, applications
can only query the Printer attribute and not this Server attribute in order to determine
which document attributes can be used.

job-attributes-supported
A list of the job attributes supported by the X Print Server. This list is comprised of a set
of whitespace-delimited attribute names.

The list of job attributes shall include only attributes that are handled by the X Print
Server. The full set of supported job attributes for a given printer is determined by the
printer ddx driver. The driver augments the value of this server attribute, and presents the
full set of supported job attributes as the value of the Printer object job-attributes-
supported attribute. As such, applications can only query the Printer attribute and not
this Server attribute in order to determine which job attributes can be used.

locale
The value of this attribute is the locale in which the X Print Server is running.

Attribute Configuration DDX Driver Application

document-attributes-supported X

job-attributes-supported X

locale X X

multiple-documents-supported X X

Functional specification

101
CDE/Motif PST

CDEnext

multiple-documents-supported
This attribute indicates whether the server supports jobs containing multiple documents.
The sample implementation does not support multiple documents, so this value will
always be False in the sample implementaion.

Functional specification

102
CDE/Motif PST

CD
En

ex
t

7.4 Printer Attribute Definitions

7.4.1 Description

Printer attributes describe printer capabilities. Applications retrieve these attributes using XpGetAttributes
from the X Print Extension API.

The following table shows where querying and / or setting a printer attribute value is supported within the X Print
Service (note: applications cannot set printer attribute values).

Table 7-1: Printer Attribute Usage

Attribute Configuration DDX Driver Application

content-orientations-supported X X X

descriptor X X X

document-attributes-supported X X

document-formats-supported X X X

dt-pdm-command X X X

input-trays-medium X X X

job-attributes-supported X X

medium-source-sizes-supported X X X

plexes-supported X X X

printer-model X X X

printer-name X X

printer-resolutions-supported X X X

xp-ddx-config-file-name X X

xp-ddx-identifier X X

xp-embedded-formats-supported X X X

xp-listfonts-modes-supported X X X

xp-model-identifier X

xp-page-attributes-supported X X

xp-raw-formats-supported X X X

xp-setup-proviso X X X

xp-spooler-command X X X

Functional specification

103
CDE/Motif PST

CDEnext

7.4.2 Printer Attributes
content-orientations-supported

A list of orientations that the printer supports. The list is a group of strings separated by
white space. Valid values are portrait, landscape, reverse-portrait, and
reverse-landscape.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.

The initial value of the content-orientations-supported attribute is typically
set by the printer vendor in the model-config file.

descriptor
The descriptor is a human readable description of the printer encoded as
COMPOUND_TEXT. This description may contain more than one line. Some GUI
components may choose to only display the first line due to space limitations.

No default is provided for this attribute. No validation of the attribute value is performed.

The initial value of the descriptor attribute is typically set by the system
administrator in the printer attributes file.

document-attributes-supported
A list of document attributes supported for the printer. This list is comprised of a set of
whitespace-delimited attribute names.

The value of the document-attributes-supported attribute is determined by
the print ddx driver.

document-formats-supported
A list of document formats, including format variants and format versions that the print
ddx driver supports. Each entry in the list is a structure comprised of the document-
format, an optional document-format-variant, and an optional document-format-version.
Specific printer ddx drivers may require specification of the optional values. Structure
values are enclosed by curly braces “{}” and delimited by whitespace. Valid values in
the sample implementation are { PCL 5 } and { PostScript 2 }.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above. The
actual set of valid document-format values varies based on the ddx.

The initial value of the document-formats-supported attribute is typically set
by the printer vendor in the model-config file.

dt-pdm-command
The command that will be used to run the Print Dialog Manager for this printer.
Command line options may be included, and will be used (unexpanded) by the DtPDM
daemon when invoking the PDM.

Example: dtpdm -option n

Functional specification

104
CDE/Motif PST

CD
En

ex
t

The default value is implicitly determined by the DtPDM daemon to be dtpdm. No
validation of the attribute value is performed.

The initial value of the dt-pdm-command attribute is typically set by the printer
vendor in the model-config file.

input-trays-medium
This attribute identifies what medium is loaded in each printer tray. The value is
specified as a list of structures, each of which contains a tray identifier and a medium
identifier. Valid tray identifiers are top, middle, bottom, envelope, manual,
large-capacity, main, and side. The X Print Service defines valid medium
identifiers to be the standard values of the medium-size attribute as specified in ISO/
IEC 10175-1.

Example: {top na-letter} {bottom iso-a4}

The default value is implicitly determined to be an empty list. Validation for this attribute
is as described for multi-valued attributes in 7.2.2 above. Additionally, for each tray /
medium (size) combination, the tray must be present in the value of the medium-
source-sizes-supported attribute, and the medium size must be listed for that
tray; otherwise the tray / medium combination is considered invalid.

The initial value of the input-trays-medium attribute is typically specified by the
system administrator in the printer attributes file.

job-attributes-supported
A list of the job attributes supported for the printer. This list is comprised of a set of
whitespace-delimited attribute names.

The value of the job-attributes-supported attribute is determined by the print
ddx driver.

medium-source-sizes-supported
This attribute identifies or specifies the sizes of media that are supported by the printer.
For each input tray a set of supported media sizes is indicated. For each medium, the
page size, an indicator as to the medium feed direction, and the assured reproduction
area the printer supports are specified.

Valid input tray values are top, middle, bottom, envelope, manual,
large-capacity, main, and side. If the printer has only one input tray,
specification of this value is optional (a placeholder of ‘’ is required).

The page size is a descriptive-name indicating the size of the page. Examples are
iso-a4, na-letter, and na-legal. The complete list of valid values is the set of
descriptive-names defined for the standard values of the medium-size attribute as
specified in ISO/IEC 10175-1.

The medium feed direction is represented as a boolean value indicating whether the long
edge (TRUE) or the short edge (FALSE) feeds into the printer so that orientation is
specified.

Functional specification

105
CDE/Motif PST

CDEnext

The assured reproduction area is the area within the current medium that the printer can
render to. This area is specified in millimeters according to the RCS coordinate system
defined by the ISO DPA. The X Print Service requires that each position be specified as
an integer. The area value is defined by a structure containing the minimum-x, maximum-
x, minimum-y, and maximum-y. For example, if the printer cannot print within one
centimeter of the edges of A4 paper, then the value would be:
{ 10 200 10 287 }.

The value for a medium size is specified in a structure comprised of the page size, the
feed direction indicator, and the assured reproduction area. For the A4 example, if the
short edge of the medium feeds into the printer the value would be:
{ iso-a4 FALSE {10 200 10 287} }.

The value of the medium-source-sizes-supported attribute is a list of
structures, each comprised of the input tray value and a set of medium size values. For
example, if the printer has two input trays which each support A4 or A5 paper, and the
short edge of the medium feeds into the printer, and the printer cannot render within one
centimeter of the medium edges, then the value of the medium-source-sizes-
supported attribute would be:
{ top {iso-a4 FALSE {10 200 10 287}} {iso-a5 FALSE {10 138
10 200}} } { bottom {iso-a4 FALSE {10 200 10 287}} {iso-a5
FALSE {10 138 10 200}} }.

The default value is explicitly set with an omitted input tray, a single medium size of
na-letter, short edge feed direction, and a reproducible area based on 1/4 inch
margins. Validation for this attribute is as described for multi-valued attributes in 7.2.2
above. Syntax errors may cause the entire value to be considered invalid.

The initial value of the medium-source-sizes-supported attribute is typically
set by the printer vendor in the model-config file.

plexes-supported
A list of plex options that the printer supports. The list is a group of strings separated by
white space. Valid values are simplex, duplex, and tumble.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.

The initial value of the plexes-supported attribute is typically set by the printer
vendor in the model-config file.

printer-model
Human-readable text that identifies the make and model of the printer. This value is
encoded as COMPOUND_TEXT.

Example: Hewlett-Packard LaserJet IV

No default is provided for this attribute. No validation of the attribute value is performed.

The initial value of the printer-model attribute is typically set by the printer vendor
in the model-config file.

Functional specification

106
CDE/Motif PST

CD
En

ex
t

printer-name
This attribute uniquely identifies a printer on a given X Print Server. This attribute is not
explicitly set in a configuration file; it is generated by the X Print Server.

printer-resolutions-supported
A list of the resolutions in dots per inch that the printer supports. For example, if a
printer supports 300 dpi and 600 dpi printing, the value would be: 300 600.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.

The initial value of the printer-resolutions-supported attribute is typically
set by the printer vendor in the model-config file.

xp-ddx-config-file-name
The name of a ddx driver-defined configuration file. Whether or not this attribute is
utilized is determined by each individual driver. The file name is taken relative to the ddx
configuration directory for the driver.

A default value may be assumed depending on the individual driver.

The initial value of the xp-ddx-config-file-name attribute is typically set by the
printer vendor in the model-config file.

xp-ddx-identifier
This attribute identifies which printer ddx driver should be used for this printer. The
value is a driver name provided by the ddx driver to the server, and is determined by the
printer driver developer. It is recommended that the value consist of the manufacturer
and either the PDL used, for generic drivers, or a printer model, for model-specific
drivers. Valid values in the sample implementation are XP-PCL, XP-POSTSCRIPT, and
XP-RASTER.

The default value in the sample implemention is implictly taken to be XP-
POSTSCRIPT by the X Print Server. Validation for this attribute is as described for
single valued attributes in 7.2.2 above.

The initial value of the xp-ddx-identifier attribute is typically set by the printer
vendor in the model-config file.

xp-embedded-formats-supported
This attribute identifies the set of data formats recognized as valid values for the
doc_fmt parameter of the XpPutDocumentData function, when this function is
called within a print document of type XPDocNormal. See the “XpStartDoc -
XpEndDoc - XpCancelDoc” and “XpPutDocumentData” sections of the “X Print
Service Extension Library” chapter for details.

The value is a list of data formats. Each entry in the list is a structure comprised of the
data format, an optional format variant, and an optional format version. Specific printer
ddx drivers may require specification of the optional values. Structure values are
enclosed by curly braces “{}” and delimited by whitespace. Valid values are defined by
the printer ddx driver. For the sample implementation, valid values may include {EPS},
{PostScript 2}, {PCL 5}, and {HPGL 2}.

Functional specification

107
CDE/Motif PST

CDEnext

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above. The
actual set of valid document-format values varies based on the ddx.

The initial value of the xp-embedded-formats-supported attribute is typically
set by the printer vendor in the model-config file.

xp-listfonts-modes-supported
Defines the set of values that may be used to comprise the value of the xp-
listfonts-modes document / page attribute. The value is a whitespace delimited list
of listfonts mode values, which are defined below. See the documentation for the xp-
listfonts-modes attribute for details.

Valid listfonts mode values in the sample implementation are xp-list-internal-
printer-fonts and xp-list-glyph-fonts.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.

The initial value of the xp-listfonts-modes-supported attribute is typically
set by the printer vendor in the model-config file.

xp-model-identifier
The X Print Service allows specification of DPA Printer object attribute definitions
across two configuration files: the attributes/printer file and the
models/*/model-config file. The xp-model-identifier is defined to
provide an association between these two files.

The xp-model-identifier attribute value is specified in the
attributes/printer file. This value corresponds to the name of a model
subdirectory under the models configuration directory. The X Print Service obtains
initial printer attributes from the model-config file in the named model subdirectory.

The value consists of the manufacturer and model of the printer. It is recommended that
the value consist of only uppercase characters, since either the model identifier or the
printer name (typically lowercase) may function as a qualifier for attribute definitions
within the configuration files. Valid characters for the value of
xp-model-identifier are a-z, A-Z, 0-9, _, and -.

Example values are HPDJ1600C, IBM-4039-161, and SUN_NP20.

There is no default value for this attribute. Validation for this attribute is as described for
single valued attributes in 7.2.2 above. If a model-config file cannot be found based
on the value, the value is considered invalid.

The initial value of the xp-model-identifier attribute is typically specified by the
system administrator in the printer attributes file.

xp-page-attributes-supported
A list of page attributes supported for the printer. This list is comprised of a set of
whitespace-delimited attribute names.

Functional specification

108
CDE/Motif PST

CD
En

ex
t

The value of the xp-page-attributes-supported attribute is determined by the
print ddx driver.

xp-raw-formats-supported
This attribute identifies the set of data formats recognized as valid values for the
doc_fmt parameter of the XpPutDocumentData function, when this function is
called within a print document of type XPDocRaw. See the “XpStartDoc - XpEndDoc -
XpCancelDoc” and “XpPutDocumentData” sections of the “X Print Service Extension
Library” chapter for details.

The value is a list of data formats. Each entry in the list is a structure comprised of the
data format, an optional format variant, and an optional format version. Structure values
are enclosed by curly braces “{}” and delimited by whitespace. Valid values are defined
based on the phyiscal printer’s capabilities. Examples include {PostScript 2} and
{PCL 5}.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation entails syntax checking only.

The initial value of the xp-raw-formats-supported attribute is typically set by
the printer vendor in the model-config file.

xp-setup-proviso
This attribute indicates whether or not a required attribute or set of attributes must be set
(typically via user interaction with the Print Dialog Manager) prior to commencing the
print job. This attribute will not be utilized by the Sample Implementation print ddx
drivers. However, the DtPrintSetupBox will check this attribute along with the xp-
setup-state job attribute in order to ensure forward compatibility with drivers that
may require this (eg. a fax driver that requires a phone number provided by the user).

Valid values for this attribute are xp-setup-mandatory and xp-setup-
optional. If this attribute is not specified, xp-setup-optional is assumed.

The initial value of the xp-setup-proviso attribute is typically set by the printer
vendor in the model-config file.

xp-spooler-command
This attribute can be used to override the default spooling operation performed by the X
Print Server. The value consists of a command plus any command line options. The
resulting print file is passed to the command via stdin.

The command line may contain references to a predefined set of variables, that will be
expanded by the server. The variables are:

%printer-name% the name of the printer

%copy-count% the value of the copy-count attribute

%job-name% the value of the job-name attribute

%options% the value of the xp-spooler-command-options attribute

Example: /opt/mystuff/bin/my_lp -printer %printer-name%

Functional specification

109
CDE/Motif PST

CDEnext

The initial value of the xp-spooler-command attribute is typically not specified.

Sample Printer Attributes

xp-printer-model-identifier: HPLJ4SI
xp-server-list: ganymede.acme.com:6
content-orientations-supported: portrait landscape
descriptor: LaserJet in the West Wing
document-formats-supported: {PostScript 2} {PCL 5}
medium-source-sizes-supported: \
 {top {iso-a4 FALSE {10 200 10 287}} {iso-a5 FALSE {10 138 10 200}} } \
 {bottom {iso-a4 FALSE {10 200 10 287}} {iso-a5 FALSE {10 138 10 200}} }
input-trays-medium: { main iso-a4 } { large-capacity na-letter }
printer-resolutions-supported: 300 600
plexes-supported: simplex duplex tumble

Functional specification

110
CDE/Motif PST

CD
En

ex
t

7.5 Job Attribute Definitions

7.5.1 Description

Job attributes provide information on how to process a print job. Applications set and retrieve these attributes using
XpSetAttributes and XpGetAttributes from the X Print Extension API. Typically, job attributes are set
by the Print Dialog Manager based on user input from the setup dialog.

The following table shows where querying and / or setting a job attribute value is supported within the X Print
Service.

Table 7-1: Job Attribute Usage

7.5.2 Job Attributes
job-name This is the name of the job to be used in subsequent processing and in printing banner

pages. The value is free form text.

No default is provided for this attribute. No validation of the attribute value is performed.

job-owner This attribute identifies the human owner of the print job. This attribute is set by
XpStartJob immediately prior to issuing the PrintStartJob request, and may be
used by the XpSubmitJob driver interface function to identify the user to the spooler.
This attribute cannot be set in a configuration file.

notification-profile
This attribute is a specification of events about which the user is to be notified. The X
Print service uses this attribute to determine whether or not to notify the user of print job
completion via electronic mail, or in ISO DPA parlance, the X Print Service recognizes
the event-report-job-completed event with a delivery-method of
electronic-mail.

Valid values for notification-profile attribute in the sample implementation are
{{event-report-job-completed} electronic-mail} to send an email
message, and {} if no message is to be sent.

The default value is implicitly taken to indicate that no message be sent. No validation of
the attribute value is performed.

Attribute Configuration DDX Driver Application

job-name X X X

job-owner X X

notification-profile X X X

xp-setup-state X X X

xp-spooler-command-options X X X

Functional specification

111
CDE/Motif PST

CDEnext

xp-setup-state
If the value of the xp-setup-proviso printer attribute is xp-setup-
manadatory, then xp-setup-state is used to indicate the current setup state as
determined by the Print Dialog Manager on behalf of the print ddx driver. If the value of
xp-setup-proviso is xp-setup-optional, the value of xp-setup-state
is ignored.

Valid values for xp-setup-state are xp-setup-ok and xp-setup-
incomplete. xp-setup-ok indicates that all attributes the ddx driver requires the
user to set are valid, indicating a client may commence printing if desired. xp-setup-
incomplete indicates that one or more attributes the driver requires are unspecified or
invalid; printing should not be attempted.

The initial value of xp-setup-state is typically not specified in the job attributes
configuration file. If xp-setup-state is unspecified, the default value is xp-
setup-incomplete.

xp-spooler-command-options
A free form text string that will be included verbatim on the command line used to
invoke the spooler. Valid values are spooler-dependent.

No default is provided for this attribute. No validation of the attribute value is performed.

xp-spooler-command-results
A free form text string that will contain the spooler command output that would
otherwise appear on a terminal (e.g. stderr and stdout). This text may be useful to present
to the user to allow tracking of the resulting spooler job. Applications should retrieve this
value following receipt of the XPEndJobNotify event.

Sample Job Attributes

job-name: My Job
xp-spooler-command-options: -onb

Functional specification

112
CDE/Motif PST

CD
En

ex
t

7.6 Document Attribute Definitions

7.6.1 Description

Document attributes indicate how to process the current document. Applications set and retrieve these attributes
using XpSetAttributes and XpGetAttributes from the X Print Extension API. Typically, document
attributes are set by the DT Print Dialog Manager based on user input from the print dialogs.

The following table shows where querying and / or setting a document attribute value is supported within the X
Print Service.

Table 7-1: Document Attribute Usage

7.6.2 Document Attributes
content-orientation

Specifies the orientation to be used for this document. Valid values are:
portrait, landscape, reverse-portrait, and reverse-landscape.

The default value is implicitly determined by the ddx driver to be the first entry in the
value of the content-orientations-supported printer attribute. Validation for
this attribute is as described for single valued attributes in 7.2.2 above. The value must
appear in the content-orientations-supported attribute value to be
considered valid.

copy-count
Specifies the number of copies of this document to print.

The default value is implicitly taken to be 1 by the X Print Server. Validation for this
attribute is as described for single valued attributes in 7.2.2 above. The value must be a
positive integer.

default-printer-resolution
Specifies the resolution in dots per inch to be used for this document.

Attribute Configuration DDX Driver Application

content-orientation X X X

copy-count X X X

default-printer-resolution X X X

default-input-tray X X X

default-medium X X X

document-format X X X

plex X X X

xp-listfonts-modes X X X

Functional specification

113
CDE/Motif PST

CDEnext

The default value is implicitly determined by the ddx driver to be the first entry in the
value of the printer-resolutions-supported printer attribute. Validation for
this attribute is as described for single valued attributes in 7.2.2 above. The value must
appear in the printer-resolutions-supported attribute value to be considered
valid.

default-input-tray
The name of the input tray from which media will be drawn for printing the document.
Valid values are: top, middle, bottom, envelope, manual, large-capacity,
main, and side. If the default-medium attribute is specified, it will take
precedence over default-input-tray.

No default is assumed for this attribute, since the default-medium attribute takes
precedence. Validation for this attribute is as described for single valued attributes in
7.2.2 above. The input tray must be included in the medium-source-sizes-
supported printer attribute value (note: if an entry in medium-source-sizes-
supported omits the input tray specifier, then the input tray value specified for
default-input-tray will be considered valid, provided of course that it is listed as
one of the valid values above).

default-medium
Specifies the medium on which the document is to be printed. The X Print Service
defines valid default-medium values to be the standard values of the medium-
size attribute as specified in ISO/IEC 10175-1.

The default value is implicitly determined by the ddx driver, provided the default-
input-tray attribute is unspecified. The default will correspond to the first medium
size found in the value of the medium-source-sizes-supported printer
attribute. Validation for this attribute is as described for single valued attributes in 7.2.2
above. The value must appear in the medium-source-sizes-supported attribute
value to be considered valid.

document-format
Specifies the format of the document. The value is a structure comprised of the
document-format, an optional document-format-variant, and an optional document-
format-version. Specific printer ddx drivers may require specification of the optional
values. The structure values are enclosed by curly braces “{}” and delimited by
whitespace. Valid values in the sample implementation are { PCL 5 } and {
PostScript 2 }.

The default value is determined by the ddx, and is explicitly set in the printer pool.
Validation for this attribute is as described for single valued attributes in 7.2.2 above.
The value must appear in the document-formats-supported printer attribute
value to be considered valid.

plex
Specifies the plex to be used for this document. Valid values are simplex, duplex,
and tumble.

Functional specification

114
CDE/Motif PST

CD
En

ex
t

The default value is implicitly determined by the ddx driver to be the first entry in the
value of the plexes-supported printer attribute. Validation for this attribute is as
described for single valued attributes in 7.2.2 above. The value must appear in the
plexes-supported attribute value to be considered valid.

xp-listfonts-modes
The value of this attribute controls the behavior of the XListFonts Xlib function as
well as related calls such as XLoadFont when these calls are made on a display that
has a print context set on it. The value is a whitespace delimited list of one or more
listfonts mode values. Valid listfonts mode values in the sample implementation are xp-
list-internal-printer-fonts and xp-list-glyph-fonts.

In the following discussion, references to XListFonts should be taken to mean all
related Xlib functions that operate on the list of fonts provided by the X Server.

When a print context is set on a display connection, the default behavior of
XListFonts is to list all of the fonts normally associated with the X print server (i.e.
fonts containing glyphs) as well as any internal printer fonts defined for the printer. See
the “Fonts” chapter for details on printer fonts. The xp-listfonts-modes attribute
is provided so that applications can control the behavior of XListFonts, typically to
show just internal printer fonts. Using only internal printer fonts is useful for
performance reasons; the glyphs associated with the font are contained within the printer
and do not have to be downloaded to it.

If the value of xp-listfonts-modes includes xp-list-glyph-fonts
XListFonts will include all of the fonts available to the server which have glyphs
associated with them. If the value of xp-listfonts-modes includes xp-list-
internal-printer-fonts then XListFonts will include all of the fonts defined
as internal printer fonts.

The default value is implicitly determined by the ddx driver to be the all of the listfonts
modes specified in the xp-listfonts-modes-supported printer attribute.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.
Each listfonts mode value must appear in the xp-listfonts-modes-supported
attribute value to be considered valid.

Sample Document Attributes

default-printer-resolution: 300
plex: duplex
content-orientation: portrait
document-format: {PCL 5}
copy-count: 2
default-input-tray: side

Functional specification

115
CDE/Motif PST

CDEnext

7.7 Page Attribute Definitions

7.7.1 Description

Page attributes are document attributes that can be overridden on a page by page basis within the X Print Service.
Applications set and retrieve these attributes using XpSetAttributes and XpGetAttributes from the X
Print Extension API.

The default for each page attribute is the current value of the corresponding document attribute. Validation of page
attributes is the same as for document attributes.

The following table shows where querying and / or setting a page attribute value is supported within the X Print
Service.

Table 7-1: Page Attribute Usage

7.7.2 Page Attributes
content-orientation

Specifies the orientation to be used for this page. Valid values are:
portrait, landscape, reverse-portrait, and reverse-landscape.

default-printer-resolution
Specifies the resolution in dots per inch to be used for this page.

default-input-tray
The name of the input tray from which media will be drawn for printing the page. Valid
values are: top, middle, bottom, envelope, manual, large-capacity,
main, and side. If the default-medium attribute is specified, it will take
precedence over default-input-tray.

default-medium
Specifies the medium on which the page is to be printed. The X Print Service defines
valid default-medium values to be the standard values of the medium-size
attribute as specified in ISO/IEC 10175-1.

plex
Specifies the plex to be used for this page. Valid values are simplex, duplex, and
tumble.

Attribute Configuration DDX Driver Application

content-orientation X X

default-printer-resolution X X

default-input-tray X X

default-medium X X

plex X X

xp-listfonts-modes X X X

Functional specification

116
CDE/Motif PST

CD
En

ex
t

xp-listfonts-modes
The value of this attribute controls the behavior of the XListFonts Xlib function as
well as related calls such as XLoadFont when these calls are made on a display that
has a print context set on it. The value is a whitespace delimited list of one or more
listfonts mode values. Valid listfonts mode values in the sample implementation are xp-
list-internal-printer-fonts and xp-list-glyph-fonts.

In the following discussion, references to XListFonts should be taken to mean all
related Xlib functions that operate on the list of fonts provided by the X Server.

When a print context is set on a display connection, the default behavior of
XListFonts is to list all of the fonts normally associated with the X print server (i.e.
fonts containing glyphs) as well as any internal printer fonts defined for the printer. See
the “Fonts” chapter for details on printer fonts. The xp-listfonts-modes attribute
is provided so that applications can control the behavior of XListFonts, typically to
show just internal printer fonts. Using only internal printer fonts is useful for
performance reasons; the glyphs associated with the font are contained within the printer
and do not have to be downloaded to it.

If the value of xp-listfonts-modes includes xp-list-glyph-fonts
XListFonts will include all of the fonts available to the server which have glyphs
associated with them. If the value of xp-listfonts-modes includes xp-list-
internal-printer-fonts then XListFonts will include all of the fonts defined
as internal printer fonts.

The default value is implicitly determined by the ddx driver to be the all of the listfonts
modes specified in the xp-listfonts-modes-supported printer attribute.
Validation for this attribute is as described for multi-valued attributes in 7.2.2 above.
Each listfonts mode value must appear in the xp-listfonts-modes-supported
attribute value to be considered valid.

Sample Page Attributes

content-orientation: landscape
default-printer-resolution: 150
default-medium: na-legal
plex: simplex

7.8 See Also

u “X Print Service Extension Library” chapter.
u “X Print Configuration Databases” chapter.
u “X Print Driver Interface” chapter.
u “Application Print Dialogs” chapter.

117
CDE/Motif PST

CDEnext

FONTS

8.1 Overview

Fonts play an important role in the printing environment. The basic tenet of the DtPrint X Server is to act like a
regular X server. X programmers will find the interface familiar.

PURPOSE

Provide the ability to render text.

DESCRIPTION

Fonts may come from several sources:

u Fonts built into the printer (both bitmapped and scalable).
u Bitmapped fonts on the server’s local disk.
u Scalable and bitmapped fonts in a format compatible with the printer.
u Fonts from a font server.

From a printing application’s point of view, the LoadFont, QueryFont, and ListFonts requests work as usual after
the creation and setting of a print context. If the document-formats-supported attribute contains multiple document
formats, then the client must set the document-format attribute prior to performing any font requests. All fonts must
be on the font path for the print context. In the sample implementation, that font path is identical to the server’s font
path. That is to say, in the sample implementation there is one server-wide font path. ListFonts returns a list of fonts
available along the font path. The X Logical Font Description (XLFD) 1.5 standard is supported.

Font Path Handling. In the sample print server there is one server-wide font path. At server initialization time
the font path element corresponding to each printer model configured into the server is added at the front of the
server’s font path. This means that the font path elements for the printer internal fonts precede the font path
elements for other font types. The font renderer for the printer internal font path elements inspects the client
performing any font-related request, and responds differently based on whether or not the client has set a print
context, and if so, then depending on the model of printer specified in the print context. If the client has not set a
print context, or if the client’s print context specifies a printer model other than that associated with the particular
font path element, then the renderer will not find or return any fonts. If the client has set a print context and the
printer specified by that print context matches the model associated with the font path element, then the renderer
responds to the font request with information derived from the “.pmf” and other files (e.g. fonts.alias) in the fonts
directory within that printer model’s configuration directory.

Fonts built into the printer (both bitmapped and scalable). Users will generally prefer to use
internal fonts for performance reasons: they already reside in the printer and do not have to be downloaded.The
configuration directory for each printer containing internal fonts has a subdirectory named “fonts”. This directory
contains “.pmf” files defining the metrics for all glyphs in the font. The “.pmf” file format is analogous to that of a
“.pcf” file with the glyphs omitted.

Functional specification

118
CDE/Motif PST

CD
En

ex
t

PCF bitmapped fonts on the server’s local disk. The print server treats these fonts like ordinary X
fonts. In response to a LoadFont request, the server will scale the font as required and, in the case of the PCL driver,
will convert the font into a format appropriate to the printer and download the font. QueryFont will return an X Font
Structure containing metrics for the font.

Fonts from an X font server. These fonts are analogous to having PCF fonts on disk. The difference is that
these scale inside the font server.

DEPENDENCIES

Print properties rely on X standard mechanisms:

u Xlib.
u X protocol.
u font server technology.

8.2 Systems Administration Considerations

8.2.1 Related Information
FILES

The print driver’s configuration directory stores the metrics for the printer’s internal fonts. It contains the
font metrics in pmf files. The pmf files are identical to pcf files, but with glyphs removed. A fonts.dir is an
index to the fonts. A fonts.alias file provides font names consistent with the X Logical Font Description
(XLFD) Version 1.5.

119
CDE/Motif PST

CDEnext

X PRINT DRIVER INTERFACE

9.1 Xp Print Driver Overview

9.1.1 PURPOSE
This chapter describes the interfaces used to integrate the print drivers into a server with the Xp extension.
This section includes descriptions of the functions a driver is required to implement in order to cooperate
with the Xp extension, and descriptions of some utility functions available for the convenience of driver
writers. Not covered here are normal DDX driver interfaces for core X functionality.

9.1.2 DESCRIPTION
The X Print server is simply an X server with the Xp extension. The drivers effectively provide a mapping
from most X protocol rendering operations to a form understandable by a particular class of printer. The
drivers are much like the hardware-specific display drivers in any other X server, but need to have some
slightly different and extended capabilities in order to cooperate with the Xp extension, and with the
configuration capabilities exposed via the Print Dialog Manager and its associated setup dialogs.

9.1.3 DEPENDENCIES
The print drivers are tightly coupled with the X server itself, and the initial sample print server will be
based on the X11-R6 server as supplied by the X Consortium.

9.1.4 ISSUES

9.2 X Print Driver Initialization

9.2.1 Information Available During Initialization
The driver has the following practical sources of information during its initialization:

u Command line arguments - The driver’s initialization routine is passed argc and argv corresponding to the
arguments passed on the command line to the server.

u Information in the ScreenRec - The driver’s initialization routine is passed a pointer to a ScreenRec
containing potentially useful information. In particular the width, height, mmWidth, and mmHeight fields
are filled in with the maximum potential dimensions prior to the calling of the driver’s initialization routine.

u Driver-specific configuration files - The driver can attempt to read information from on-disk files it may
expect to be in place on the system.

Functional specification

120
CDE/Motif PST

CD
En

ex
t

9.2.2 Xp Extension Initialization Interface
The Xp extension is a bit abnormal relative to other X server extensions. In particular, it is possible to have
this extension be applicable on a subset of the screens of a given server. This enables a workstation with an
attached printer to utilize a single process for both the X display and the Xp functions. Another somewhat
unusual aspect of this extension is that the implementation of its functionality is highly device dependent,
and thus each driver must support a set of entry points beyond those provided by normal DDX-compatible
drivers. To these ends the driver’s initialization routine (i.e. the function which might be called from
dix:addScreen) must call a function to provide a pointer to the driver’s InitContext function.

9.3 XpRegisterInitFunc

9.3.1 Short Description
Provides the printer-independent print server code with a pointer to the driver’s routine to be called when a
print context is being initialized for a printer associated with this driver.

9.3.2 Long Description
NAME

XpRegisterInitFunc - register an InitContext function with the device-independent print server code.

SYNOPSIS

void XpRegisterInitFunc(ScreenPtr pScreen, int(*InitContext)(),
 char *driverName);

ARGUMENTS

pScreen Specifies a pointer to a ScreenRec indicating a screen which is prepared to
support the Xp extension.

initContext Specifies a pointer to the function to be called when a print context is
initialized.

driverName Specifies the name of the driver. The names defined in the CDE sample are:
XP-RASTER, XP-PCL, and XP-POSTSCRIPT.

RETURN VALUE

None.

DESCRIPTION

The XpRegisterInitFunc provides to the printer-independent portion of the X print server a pointer to the
routine to be called during the creation and initialization of a print context associated with a printer which
this driver supports.

Functional specification

121
CDE/Motif PST

CDEnext

9.4 Attribute Concepts

Much of the functionality of the Xp system is controlled via the setting of various attributes. The
attributes both describe the capabilities of the printer, and allow the user and/or the application to control
many aspects of the printed output. Most of the attributes are defined in the ISO 10175 and POSIX 1387.4
standards, and are broken into a few different pools.

9.4.1 Server Attributes
These attributes are read-only to the driver. They are created and initialized when the server is initialized,
and remain unchanged until the server recycles or is restarted.

9.4.2 Printer Attributes
These attributes are writable only by the print driver. An application can only read these values, as they are
a description of the capabilities of the printer and driver combination. These attributes include a
description of the available and supported media types, and the supported page description languages
among others.

9.4.3 Document Attributes
These attributes describe such things as the media to use for the document, the “plex” to use, and the
orientation (i.e. portrait or landscape). These attributes can be read and written by both the application and
the driver. Default values for these attributes are set by the driver (possibly using the provided utility
routines) when a new print context is initialized. The user or application can modify these attributes to
communicate such choices to the driver. It is the driver’s responsibility to communicate these attributes to
the specific printer, presumably by embedding the appropriate page description language strings in the
output. Changes in these attributes may cause the driver to perform operations such as resizing a window
referenced by a subsequent StartPage to fit the specified media size or orientation.

9.4.4 Page Attributes
These are a subset of the document attributes which can be varied on a page-by-page basis. This allows,
for example, an application to print a particular page in landscape orientation in the middle of a document
which is otherwise in portrait orientation. These attributes can be read and written by both the application
and the driver. It is the driver’s responsibility to communicate these attributes to the specific printer,
typically by embedding the appropriate page description language strings in the output. Changes in these
attributes may cause the driver to perform operations such as resizing a window to fit the specified media
size or orientation when StartPage is executed.

9.4.5 Job Attributes
These control the functioning of the spooler itself, allowing the specification of items such as the banner
page contents. These attributes can be read and written by both the application and the driver, however the
driver should be able to be blissfully unaware of these attributes if the driver chooses to utilize the
XpSubmitJob call documented below. These attributes are ignored if the client specifies the
save_data field to be XPGetData in its call to StartJob.

Functional specification

122
CDE/Motif PST

CD
En

ex
t

9.5 Attribute Store and Spooler Interface Functions

The functions described in this section are intended as conveniences for the drivers in implementing their
GetAttribute, SetAttribute, and EndJob functions. The DDX drivers are not required to use the
functions described in this section, but it is strongly recommended that they do so. These functions provide
the driver with insulation from the underlying print spooling system, and are intended to allow drivers
developed for the initial sample server to function in environments where more capable printing systems
(e.g. Palladium) are in place. These functions do not attempt to mirror the API afforded by the Palladium
system, but should provide sufficient capabilities to allow a driver access to all attributes accessible via a
Palladium based-system. A driver which chooses not to use these functions is unlikely to integrate
smoothly into a Palladium-based environment. Note that the Attribute Store functions do no error checking
of Printer, Document, or Page attributes, as such checking is left entirely in the hands of the driver. Driver
writers are advised to write their context initialization code such that it gets the attributes, and edits them
prior to responding to the first GetAttributes request from a client. A store of Job attributes is
maintained and error-checked internally by the attribute store.

From a driver’s perspective the Attribute Store consists of four distinct collections of attributes: Printer
Attributes, Document Attributes, Job Attributes, and PageAttributes. All of these attributes are writable
for the driver, even though the protocol specifies that the Printer Attributes are read-only. This write access
allows the driver to modify the attributes to more accurately describe the capabilities it possesses. As an
example, immediately after initialization of the Attribute Store the Printer Attributes may contain an entry
stating that the document-formats-supported include both PCL and PostScript (e.g. for a HP-DeskJet
1600C). If the driver only supports a single document-format then the driver should change the document-
formats-supported attribute to reflect the fact that it only supports its single document-format. There are
separate attribute stores maintained on a per-print-context basis. All strings are in the form accepted by
XrmGetStringDatabase().

9.6 XpInitAttributes

9.6.1 Short Description
Causes the Attribute Store to be initialized. In the initial sample implementation, this causes the Attribute
Store to read the initial attribute values from the on-disk configuration files if they have not been read
previously. The driver typically calls this routine in the function invoked by InitPrintContext. The
attributes are expected to carry forward unchanged between jobs within the same print context, but the
closing and re-initializing of a client’s print context should result in freshly initialized attributes. To effect
this, a driver should call XpInitAttributes once and only once for each InitPrintContext
request. After the Attribute Store is initialized for a client, any changes made to the attribute store for the
client should remain intact until the print context is destroyed.

9.6.2 Long Description
NAME

XpInitAttributes - initialize the attributes for a particular print context.

SYNOPSIS

void XpInitAttributes(PrintContextPtr pContext);

Functional specification

123
CDE/Motif PST

CDEnext

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

RETURN VALUE

None.

DESCRIPTION

XpInitAttributes serves to initialize the attribute store associated with a particular print context. It
is expected that a driver will call this function upon receipt of an InitContext request. A driver must
call XpInitAttributes prior to calling either XpGetAttributes, XpGetOneAttribute,
XpAugmentAttributes or XpSetAttributes for a given context.

9.7 XpGetOneAttribute

9.7.1 Short Description
Retrieves from the Attribute Store the current value of a specified attribute.

9.7.2 Long Description
NAME

XpGetOneAttribute - obtain the current value of the specified attribute for a given print context.

SYNOPSIS

char *XpGetOneAttribute(PrintContextPtr pContext, XpAttrType pool,
char *attributeName);

ARGUMENTS

pContext Specifies a pointer to the print Context for which the attribute value is
desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr, XPServerAttr.

attributeName Specifies the name of the attribute for which the value is desired.

RETURN VALUE

A pointer to a character string containing the value of the specified attribute, or NULL if the attribute does
not exist in the attribute store. The returned string must not be freed.

DESCRIPTION

The XpGetOneAttribute function returns a string containing the value of the specified attribute as a string.

Functional specification

124
CDE/Motif PST

CD
En

ex
t

9.8 XpGetAttributes

9.8.1 Short Description
Retrieves from the Attribute Store the current contents of the specified set of attributes in its entirety.

9.8.2 Long Description
NAME

XpGetAttributes - obtain the current contents of the specified attribute set for a given print context.

SYNOPSIS

char *XpGetAttributes(PrintContextPtr pContext, XpAttrType pool);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr, XPServerAttr.

RETURN VALUE

A pointer to a character string containing the current set of attributes for the print context. It is the caller’s
responsibility to free the string when it is no longer needed.

DESCRIPTION

The XpGetAttributes function returns a string containing the current attribute names and values. It is
expected that drivers will use this function in order to implement the GetAttributes function.

9.9 XpGetMediumDimensions

9.9.1 Short Description
Retrieves from the Attribute Store the dimensions of the medium currently selected for the document
associated with a particular print context.

9.9.2 Long Description
NAME

XpGetMediumDimensions - obtain the dimensions of the medium for a document associated with a
particular print context.

SYNOPSIS

void XpGetMediumDimensions(PrintContextPtr pContext, CARD16 *width,
CARD16 *height);

Functional specification

125
CDE/Motif PST

CDEnext

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

width Returns the width of the medium.

height Returns the height of the medium.

RETURN VALUE

None.

DESCRIPTION

The XpGetMediumDimensions function provides a convenient means for the driver to determine the
overall dimensions of the medium specified for the current (or first) page of the document in the job
associated with the specified print context. The mediumDimensions returned are computed from the value
of the default-medium attribute, or if it is not specified, from the default-input-tray and
input-trays-medium attributes. If neither of these attribute sets is valid, then
XpGetMediumDimensions returns values corresponding to the first entry in the list of medium-source-
sizes-supported. The returned dimensions are in pixel units, through the use of the content-
orientation and default-resolution document attributes.

9.10 XpGetReproductionArea

9.10.1 Short Description
Retrieves from the Attribute Store the net reproducible area for the document associated with a particular
print context.

9.10.2 Long Description
NAME

XpGetReproductionArea - obtain the dimensions and position of the reproducible area for a document
associated with a particular print context.

SYNOPSIS

void XpGetReproductionArea(PrintContextPtr pContext, xRectangle *pRect);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pRect Specifies a pointer to a rectangle which will return the reproducible area.

Functional specification

126
CDE/Motif PST

CD
En

ex
t

RETURN VALUE

None.

DESCRIPTION

The XpGetReproductionArea function provides a convenient means for the driver to determine the
dimensions of the reproducible area for the current (or first) page of the document in the job associated
with the specified print context. The reproducible area differs from the medium dimensions in that the
reproducible area has had subtracted from it any regions of the medium which cannot be printed on, and all
regions which the printer mechanism cannot mark. The returned dimensions are in units of pixels, through
the use of the content-orientation and default-resolution document attributes. The
relevant medium is determined from the contents of either the default-medium attribute, or if that is
not defined the default-input-tray and input-trays-medium attributes. The medium-
source-sizes-supported attribute is used to determine the reproducible area for this medium. If
insufficient information is available from the attributes then the values returned will correspond to North
American Letter media with a one-quarter-inch non-reproducible border.

9.11 XpAugmentAttributes

9.11.1 Short Description
Augments the values of the specified attribute class.

9.11.2 Long Description
NAME

XpAugmentAttributes - augment the value of a particular attribute class for a given print context.

SYNOPSIS

void XpAugmentAttributes(PrintContextPtr pContext, XpAttrType pool,
char *attributes);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr.

attributes Specifies the names and values of the attributes.

RETURN VALUE

None.

Functional specification

127
CDE/Motif PST

CDEnext

DESCRIPTION

The XpAugmentAttributes function adds the supplied attributes to the specified attribute class. If a
supplied attribute already exists, then its new value is taken from the supplied list of attributes.

9.12 XpSetAttributes

9.12.1 Short Description
Stores a new set of attributes for a particular class of attributes.

9.12.2 Long Description
NAME

XpSetAttributes - set new attributes and values for a given print context.

SYNOPSIS

void XpSetAttributes(PrintContextPtr pContext, XpAttrType pool, char
*attributes);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are to be set.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr, XPServerAttr.

attributes A string of all the attributes and values for the specified class.

RETURN VALUE

None.

DESCRIPTION

The XpSetPrintAttributes function accepts a string containing the new attribute names and values. It is
expected that drivers will use this function in order to implement the SetAttributes function.

9.13 XpSubmitJob

9.13.1 Short Description
Requests that a particular job file be submitted to the spooler with an associated set of job attributes.

Functional specification

128
CDE/Motif PST

CD
En

ex
t

9.13.2 Long Description
NAME

XpSubmitJob - submit a file to the print spooler.

SYNOPSIS

void XpSubmitJob(char *fileName, PrintContextPtr pContext);

ARGUMENTS

fileName Specifies the name of the file to be submitted for printing.

pContext Specifies the print context associated with the print job.

RETURN VALUE

None.

DESCRIPTION

XpSubmitJob takes whatever steps are necessary to submit the specified file to the underlying spooling
system with the specified job attributes. It is expected that drivers will call this function from within their
EndJob functions. In the initial sample implementation this function invokes the lp command to spool the
job.

9.14 XpFreeAttributes

9.14.1 Short Description
Frees the storage associated with the attributes for a specified XpContext.

9.14.2 Long Description
NAME

XpFreeAttributes - free the memory associated with the attributes for a particular XpContext.

SYNOPSIS

void XpFreeAttributes(PrintContextPtr pContext);

ARGUMENTS

pContext Specifies the print context associated with the print job.

RETURN VALUE

None.

Functional specification

129
CDE/Motif PST

CDEnext

DESCRIPTION

XpFreeAttributes frees the memory associated with the attributes for the specified print context.
XpFreeAttributes should be called from the driver’s DestroyContext function.

9.15 Xp Extension Functions

A print driver must implement the following set of functions which provide the underpinnings for the
extension requests defined by the Xp extension. The InitContext call is the function which was passed to
XpRegisterInitFunc, while the other functions are called via function pointers stored in each PrintContext.
A pointer to a PrintContext is passed to each of these routines, and has the following structure:

typedef struct _xpprintfuncs {
int versionNumber;
int (*StartJob)(); /* pPrintContext, saveData */
int (*EndJob)(); /* pPrintContext, cancel */
int (*StartDoc)(); /* pPrintContext */
int (*EndDoc)(); /* pPrintContext, cancel */
int (*StartPage)(); /* pPrintContext, pWin */
int (*EndPage)(); /* pPrintContext, pWin, cancel */
int (*PutDocumentData)(); /* pPrintContext, pWin, pData,len_data, pFmt,
 pOpt */
int (*GetDocumentData)(); /* pPrintContext, client, maxBufferSize */
int (*DestroyContext)(); /* pPrintContext */
char *(*GetAttributes)(); /* pPrintContext, class */
char *(*GetOneAttribute)(); /* pPrintContext, class, attribute */
int (*SetAttributes)(); /* pPrintContext, class, pData */
int (*AugmentAttributes)(); /* pPrintContext, class, pData */
int (*GetMediumDimensions(); /* pPrintContext, pWidth, pHeight */
int (*GetReproducibleArea(); /* pPrintContext, pRect */
} XpDriverFuncs, *XpDriverFuncsPtr;

typedef struct _XpContext {
 XID contextID;
 char *printerName;
 int screenNum;
 struct _XpClient *clientHead; /* list of clients */
 CARD32 state;
 VisualID pageWin;
 DevUnion *devPrivates;
 XpDriverFuncs funcs;
} XpContextRec, *XpContextPtr;

When the driver’s InitContext function is called it is free to inspect the printerName field of the
XpContext, and is required to fill in all of the function pointers in the embedded XpDriversFuncs structure.

Functional specification

130
CDE/Motif PST

CD
En

ex
t

9.16 InitContext

9.16.1 Short Description
Provides pointers to functions implementing the various printing related operations for the specified
context.

9.16.2 Long Description
NAME

InitContext - initialize the contents of the supplied XpContext.

SYNOPSIS

int InitContext(PrintContextPtr pContext);

ARGUMENTS

pContext Specifies a pointer to the print context in which the print data will be
generated.

RETURN VALUE

Success, or a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The InitContext function supplies the driver with the name of the printer to be used in subsequent
print jobs in the specified print context. The driver is expected to fill in the function pointers within the
XpContext, and to initialize the attribute store for the print context at the time this function is called. This
enables an application to then query the printer attributes and receive accurate information. The driver
should also initialize any per-context data it wishes to maintain.

9.17 DestroyContext

9.17.1 Short Description
Notifies the driver that the context is no longer in use, and any associated data should be freed.

9.17.2 Long Description
NAME

DestroyPrintContext - release any driver resources allocated for the specified print context.

Functional specification

131
CDE/Motif PST

CDEnext

SYNOPSIS

int DestroyContext(PrintContextPtr pContext);

ARGUMENTS

pContext Specifies a pointer to the print context which is being destroyed.

RETURN VALUE

Success, or a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The DestroyContext function provides the driver an opportunity to clean up any state or resources it
has allocated in support of the specified print context. XpFreeAttributes should be called from this
function if the attribute storage facilities have been used to create the attributes store for this context.

9.18 StartJob

9.18.1 Short Description
Implements the driver level functionality of the XpStartJob extension request.

9.18.2 Long Description
NAME

StartJob - begin a new print job associated with a particular window.

SYNOPSIS

int StartJob(PrintContextPtr pContext, XPSaveData sendData);

ARGUMENTS

pContext Specifies a pointer to the print context for which the print job is starting.

sendData Specifies whether the resulting print data is to be sent to a client, and if so,
the driver must be prepared to call XpWriteClientData when there is print
output data available to be sent.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

Functional specification

132
CDE/Motif PST

CD
En

ex
t

DESCRIPTION

The StartJob function will typically check for and delete any previously created print data associated
with the print context, and will create storage space for the new print job. The sendData parameter
indicates that a client will receive the data, rather than having the data submitted to the spooling system.
The driver is then required to call XpSendClientData() when there is print data available. The driver may
assume that there will be no changes to the Job attributes for this context after the StartJob function has
been called.

9.19 EndJob

9.19.1 Short Description
Implements the driver level functionality of the XpEndJob extension request.

9.19.2 Long Description
NAME

EndJob - Ends the print job associated with a particular window, and submits the job to the printer.

SYNOPSIS

int EndJob(PrintContextPtr pContext, Boolean cancel);

ARGUMENTS

pContext Specifies a pointer to the print context for which the print job is ending.

cancel A TRUE value indicates that the job is to be canceled, and any remaining
print data discarded rather than submitted to the spooler or returned to the
client.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The EndJob function typically submits the job to the spooler. If cancel is TRUE then any remaining
print data is discarded, and if necessary the print job is canceled. If print data has been sent to a client via
XpSendClientData(), then XpSendClientData should be called with the “status” parameter set to either
END or CANCEL, depending on the value of the cancel flag. At that point the driver should be able to
properly accept a StartJob request on the same print context.

Functional specification

133
CDE/Motif PST

CDEnext

9.20 StartDoc

9.20.1 Short Description
Implements the driver level functionality of the XpStartDoc extension request.

9.20.2 Long Description
NAME

StartDoc - begins a new document within the print job associated with a window.

SYNOPSIS

int StartDoc(PrintContextPtr pContext, XPDocumentType type);

ARGUMENTS

pContext Specifies a pointer to the print context for which a new document is starting.

type Specifies the type of the document. The value is one of: XPDocRaw,
XPDocNormal. A value of XPDocRaw indicates that the data is to be
passed through unmodified by the print server, and only PutDocumentData
calls will be accepted after such a StartDoc.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The StartDoc function is primarily a place holder for any necessary functionality needed when and if
the Xp Service is implemented on top of a print spooling system which supports multiple documents in a
job, such as one compliant with POSIX 1387.4. The driver is guaranteed to receive a StartDoc call with
type equal to XpDocNormal prior to receiving a StartPage. If the driver receives a StartDoc call
with type equal to XpDocRaw it can assume it will not receive a StartPage prior to the EndDoc for
that document. The driver may assume that there will be no changes to the document attributes for the
specified context after this function has been called.

9.21 EndDoc

9.21.1 Short Description
Implements the driver level functionality of the XpEndDoc extension request.

Functional specification

134
CDE/Motif PST

CD
En

ex
t

9.21.2 Long Description
NAME

EndDoc - ends a document within the print job associated with a print context.

SYNOPSIS

int EndDoc(PrintContextPtr pContext, Boolean cancel);

ARGUMENTS

pContext Specifies a pointer to the print context for which a document is ending.

cancel Indicates whether the current document is to be canceled, and any
remaining (i.e. buffered) data for this document discarded.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The EndDoc function is essentially a place holder for any necessary functionality needed when and if the
Xp Service is implemented on top of a print spooling system capable of supporting multiple documents in
a single job, such as one compliant with POSIX 1387.4. A driver is guaranteed to receive an EndDoc
prior to an EndJob.

9.22 StartPage

9.22.1 Short Description
Implements the driver level functionality of the XpStartPage extension request.

9.22.2 Long Description
NAME

StartPage - begins a new page within the print job, and associate the print context with a window.

SYNOPSIS

int StartPage(PrintContextPtr pContext, Window pWin);

ARGUMENTS

pContext Specifies a pointer to the print context for which a new page is starting.

pWin Specifies a pointer to the window to be used as the top-most window in the
printed page.

Functional specification

135
CDE/Motif PST

CDEnext

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The StartPage function discards any previously created data for any previous page, allocates any
storage which may be necessary for a new page, resizes the window to match the size of the medium,
clears the window and all descendent windows to their backgrounds, and adds any necessary page header
data to the contents of this page. Such header data is generally determined by the values of the page
attributes. The driver may assume that there will be no changes to the Page atttributes for the specified
context after this call.

9.23 EndPage

9.23.1 Short Description
Implements the driver level functionality of the XpEndPage extension request.

9.23.2 Long Description
NAME

EndPage - ends a page within the print job associated with a window.

SYNOPSIS

int EndPage(PrintContextPtr pContext, Window pWin, Boolean cancel);

ARGUMENTS

pContext Specifies a pointer to the print context for which a new page is starting.

pWin Specifies a pointer to the top-most window for the page.

cancel A value of TRUE indicates that any remaining page data should be
discarded rather than being submitted as part of the current document.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The EndPage function adds any necessary trailing information for the page, and adds the page data to the
print job associated with the print context. The trailer data is determined by the values of the page
attributes. If cancel is TRUE, then any buffered page data should be discarded rather than being
included in the current document and job.

Functional specification

136
CDE/Motif PST

CD
En

ex
t

9.24 PutDocumentData

9.24.1 Short Description
Implements the driver level functionality of the XpPutDocumentData extension request.

9.24.2 Long Description
NAME

PutDocumentData - adds application supplied data to the print document associated with a print context.

SYNOPSIS

int PutDocumentData(
PrintContextPtr pContext;
Window pWin;
char *pData;
int len_data;
char *pFmt,
char *pOpt);

ARGUMENTS

pContext Specifies a pointer to the print context defining the print job.

pWin Specifies a pointer to the window into which the data is to be placed.

pData Points to the data to be added to the print job.

len_data Specifies the length in bytes of the data to be added to the print job.

pFmt Points to a string describing the format of the data (e.g. PCL5).

pOpt Points to a string describing driver-specific options for the data.

RETURN VALUE

Success if no errors are encountered, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The PutDocumentData function provides a means for an application to supply printer device
dependent data of its own creation. The data is added to the document associated with the specified print
context. The driver may, if it desires, modify or interpret the data based on the specified format, options,
and known printer characteristics. As an example, a driver may choose to support DeviceData formats
other than those which are supported by the printer itself by translating the data into a format understood
by the printer. If the PutDocumentData is sent following a StartDoc(printContext,
XPDocNormal), then the driver is expected to provide any generally needed page description language

Functional specification

137
CDE/Motif PST

CDEnext

header data necessary to embed the supplied data within the boundaries of the specified window, however,
if the PutDocumentData is sent after a StartDoc(printContext, XPDocRaw), then the driver is
expected to pass the data straight through to the spooler with no additions or modifications.

The window given to the PutDocumentData function specifies the size and location of the embedded data.
It may not be possible for the driver to clip the embedded data to take into account other windows which
occlude the given window.

9.25 GetDocumentData

9.25.1 Short Description
Informs the driver of which client should receive the generated document data for the print job associated
with the specified print context.

9.25.2 Long Description
NAME

GetDocumentData - establish which client should receive data generated by print jobs in a print context.

SYNOPSIS

int GetDocumentData(PrintContextPtr pContext, ClientPtr client, int
maxBufferSize);

ARGUMENTS

pContext Specifies a pointer to the print context for which the print data is desired.

client Specifies the client which is to receive all generated document data for the
job associated with the specified print context.

maxBufferSize Specifies the maximum amount of data the client wishes to receive in a
single reply.

RETURN VALUE

Success if the driver was able to set its state in preparation for returning the document data, else a code
indicating the problem (e.g. BadAlloc).

DESCRIPTION

The GetDocumentData function allows the driver to prepare for sending document data for a job to the
specified client. If the receiving client is unable to read back the generated data quickly enough to keep up
with the rate of data generation the driver is free to suspend the processing of further requests from clients
making rendering requests within a print context.

Functional specification

138
CDE/Motif PST

CD
En

ex
t

9.26 GetAttributes

9.26.1 Short Description
Returns the current contents of the specified set of attributes.

9.26.2 Long Description
NAME

GetAttributes - obtain the current contents of the specified attribute set for a given print context.

SYNOPSIS

char *GetAttributes(PrintContextPtr pContext, XpAttrType pool);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr, XPServerAttr.

RETURN VALUE

A pointer to a character string containing the current set of attributes for the print context. It is the caller’s
responsibility to free the string when it is no longer needed. GetAttributes returns a NULL pointer in the
case of an allocation error (i.e. BadAlloc), and returns a pointer to an empty string if the requested
attribute store is empty.

DESCRIPTION

The GetAttributes function returns a string containing the current attribute names and values for the
specified attribute class. It is expected that drivers will use the XpGetAttributes function to
implement this function.

9.27 GetOneAttribute

9.27.1 Short Description
Returns the value of the specified attribute within a particular attribute pool for a print context.

9.27.2 Long Description
NAME

GetOneAttribute - obtain the current value of a particular attribute.

Functional specification

139
CDE/Motif PST

CDEnext

SYNOPSIS

char *GetOneAttributes(PrintContextPtr pContext, XpAttrType pool, char
*attr);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr, XPServerAttr.

attr Specifies the attribute for which the value is desired.

RETURN VALUE

A pointer to a character string containing the value of the attribute for the print context. The caller must not
free the returned string. GetOneAttribute returns a NULL pointer in the case of an allocation error (i.e.
BadAlloc), and returns a pointer to an empty string if the requested attribute is not defined.

DESCRIPTION

The GetOneAttribute function returns a string containing the values for the specified attribute class and
attribute within the specified print context. It is expected that drivers will use the XpGetOneAttribute
function to implement this function.

9.28 AugmentAttributes

9.28.1 Short Description
Augments the contents of the specified set of attributes.

9.28.2 Long Description
NAME

AugmentAttributes - augment the contents of the specified attribute set for a given print context.

SYNOPSIS

int AugmentAttributes(PrintContextPtr pContext, XpAttrType pool, char
*attributes);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are to be
augmented.

Functional specification

140
CDE/Motif PST

CD
En

ex
t

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr.

attributes Specifies the names and values of some attributes for the above-specified
class.

RETURN VALUE

Success if no error is detected, otherwise a value indicating the error (e.g. BadAlloc,
BadAttribute).

DESCRIPTION

The AugmentAttributes function adds the specified attributes to the store of the specified attribute
class. If a supplied attribute already exists in the store, then the value supplied in this call will become the
value of that attribute.

9.29 SetAttributes

9.29.1 Short Description
Sets the contents of the specified set of attributes.

9.29.2 Long Description
NAME

SetAttributes - set the contents of the specified attribute set for a given print context.

SYNOPSIS

int SetAttributes(PrintContextPtr pContext, XpAttrType pool, char
*attributes);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

pool Specifies the pool of the attribute which is desired. This is one of
XPJobAttr, XPDocAttr, XPPrinterAttr, XPPageAttr.

attributes Specifies the names and values of all the attributes for the above-specified
class.

RETURN VALUE

Success if no error is detected, otherwise a value indicating the error (e.g. BadAlloc,
BadAttribute).

Functional specification

141
CDE/Motif PST

CDEnext

DESCRIPTION

The SetAttributes function replaces the existing attributes and values (if any) with those contained in the
attributes. It is expected that drivers will use the XpSetAttributes function to implement this
function.

9.30 Xp Utility and Convenience Functions

The functions described in this section are intended as conveniences for the drivers.

9.31 XpSendData

9.31.1 Short Description
Send printer data to any client which has performed an XpGetDocumentData call for a specific print
context.

9.31.2 Long Description
NAME

XpSendData - send print data to any interested client.

SYNOPSIS

int XpSendData(PrintContextPtr pContext, ClientPtr client, char *data,
int len_data);

ARGUMENTS

pContext Specifies a pointer to the print context for which the attributes are desired.

client A pointer to the client which is to receive the data.

data A pointer to the print data to be sent to the interested client.

len_data Specifies the length in bytes of the print data.

RETURN VALUE

Success if no error is detected, otherwise a value indicating the error (e.g. BadAlloc,
BadAttribute).

DESCRIPTION

The XpSendData function sends the supplied data to the specified client. The client should be that which
has performed an XpGetDocumentData call for the specific print context. The returned value indicates any
error which occurred during the sending of the data. This function takes care of formatting the data into
GetDocumentDataReply structures including byte-swapping reply header information.

Functional specification

142
CDE/Motif PST

CD
En

ex
t

9.32 XpAllocateContextPrivateIndex

9.32.1 Short Description
Allocate a context private index for use by the driver.

9.32.2 Long Description
NAME

XpAllocateContextPrivateIndex - allocate a context private index for use by the driver.

SYNOPSIS

int XpAllocateContextPrivateIndex();

ARGUMENTS

RETURN VALUE

An index value which can be used in a subsequent call to XpAllocateContextPrivate.

DESCRIPTION

The XpAllocateContextPrivateIndex function returns an index into the context devPrivates array for use by
the caller. This index may be passed to XpAllocateContextPrivate to have the printer-independent portion
of the server automatically allocate a fixed amount of memory with each context.

9.33 XpAllocateContextPrivate

9.33.1 Short Description
Inform the printer-independent code of the amount of memory to be allocated with each context for use by
the caller.

9.33.2 Long Description
NAME

XpAllocateContextPrivate - allocate an amount of memory with each context for use by the caller.

SYNOPSIS

int XpAllocateContextPrivate(int index, int amount);

ARGUMENTS

index Specifies an index returned by XpAllocateContextPrivateIndex.

amount The amount of memory to be allocated with each context for use by the
caller.

Functional specification

143
CDE/Motif PST

CDEnext

RETURN VALUE

Success if no error is detected, otherwise a value indicating the error (e.g. BadAlloc).

DESCRIPTION

The XpAllocateContextPrivate function informs the printer-independent portion of the server how much
memory to allocate with each context for the use of the caller.

Functional specification

144
CDE/Motif PST

CD
En

ex
t

145
CDE/Motif PST

CDEnext

X PRINT EXTENSION PROTOCOL

10.1 Protocol Overview

10.1.1 PURPOSE
The following describes the X Print Extension Protocol. The X Print Extension Protocol concentrates on
print job and page management. It also includes provisions for applications to pass device-specific data to
the printer. The X Print Extension Protocol works only on screens that support the X Print Extension.

10.1.2 DEPENDENCIES
The X Print Extension is an extension to the Core X protocol, and cannot be used outside of the X
environment.

10.1.3 ISSUES

10.2 Request Protocol Specifications

10.2.1 PrintQueryVersion

Errors: none.

This request returns the version information for the Xp extension.

 Encoding: PrintQueryVersion Request

Number of Bytes Value or Type Description

1 base major opcode

1 0 minor opcode

2 1 request length

Functional specification

146
CDE/Motif PST

CD
En

ex
t

10.2.2 PrintGetPrinterList

Errors: BadAlloc

Returns an array of structures describing the printers accessible through this server.

 Encoding: PrintQueryVersion Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

2 CARD16 major version

2 CARD16 minor version

20 unused

 Encoding: PrintGetPrinterList Request

Number of Bytes Value or Type Description

1 base major opcode

1 1 minor opcode

2 3+(nl+np + ll+lp)/4 request length

4 CARD32 printerNameLen

4 CARD32 localeLen

nl STRING8 printerName

np BYTE p=pad(nl)

ll STRING8 locale

lp BYTE lp=pad(ll)

Functional specification

147
CDE/Motif PST

CDEnext

10.2.3 PrintRehashPrinterList

Errors: none.

Causes the X-Server to recompute the list of available (active/valid) printers.

 Encoding: PrintGetPrinterList Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequenceNumber

4 (8 + nl+nlp + dl+dlp)/4 computed
listCount times

length

4 CARD32 listCount

20 unused

 (8 + nl+nlp +
dl+dlp) computed
listCount times

LISTofPRINTER list of printers

PRINTER

4 CARD32 nameLen

nl STRING8 name

nlp BYTE nlp=pad(nl)

4 CARD32 descLen

dl STRING8 desc

dlp BYTE dlp=pad(dl)

 Encoding: PrintRehashPrinterList Request

Number of Bytes Value or Type Description

1 base major opcode

1 20 minor opcode

Functional specification

148
CDE/Motif PST

CD
En

ex
t

10.2.4 PrintCreateContext

Errors: BadMatch

Specifies which printer is to be used for any subsequent jobs started from this client connection, and
associates a print context ID with this job/printer combination. The screen defines the possible values for
the printer name.

10.2.5 PrintSetContext

Errors: XPBadContext

Specifies the print context to be used in any print-related calls from this client. This call is typically used
by a client to join in cooperatively rendering a print job.

2 1 request length

 Encoding: PrintCreateContext Request

Number of Bytes Value or Type Description

1 base major opcode

1 2 minor opcode

2 4 + (nl+np + ll+lp)/4 request length

4 CARD32 contextID

4 CARD32 printerNameLen

4 CARD32 localeLen

nl STRING8 printerName

np BYTE) np=pad(nl)

ll STRING8 locale

lp BYTE lp=pad(ll)

 Encoding: PrintRehashPrinterList Request

Number of Bytes Value or Type Description

Functional specification

149
CDE/Motif PST

CDEnext

10.2.6 PrintGetContext

Errors: none.

Retrieve the currently set print context.

 Encoding: PrintSetContext Request

Number of Bytes Value or Type Description

1 base major opcode

1 3 minor opcode

2 2 request length

4 CARD32 printContext

 Encoding: PrintGetContext Request

Number of Bytes Value or Type Description

1 base major opcode

1 4 minor opcode

2 1 request length

 Encoding: PrintGetContext Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

4 CARD32 printContext

16 unused

Functional specification

150
CDE/Motif PST

CD
En

ex
t

10.2.7 PrintDestroyContext

Errors: XPBadContext

Disassociates the client from its current print context.

10.2.8 GetContextScreen

Errors: XPBadContext

 Encoding: PrintDestoryContext Request

Number of Bytes Value or Type Description

1 base major opcode

1 5 minor opcode

2 2 request length

4 CARD32 printContext

 Encoding: GetContextScreen Request

Number of Bytes Value or Type Description

1 base major opcode

1 6 minor opcode

2 1 request length

 Encoding: GetContextScreen Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

Functional specification

151
CDE/Motif PST

CDEnext

10.2.9 PrintStartJob

Errors: XPBadContext, XPBadSequence, BadValue

The server takes whatever actions are necessary to define a new print job, including discarding any
previously accumulated print data for the specified print context. This request results in the generation of a
XpNotify event with the detail field set to Xp_StartJobEvent. If the save-data flag is TRUE, then the
server will store the print data, will generate XP_DataAvailable events when there is print data readable by
the client, and will not submit the resulting job to the printer.

10.2.10 PrintEndJob

Errors: XPBadContext, XPBadSequence

The print job associated with the print context ends, and if the cancel flag is false, the accumulated print
data is sent to the printer (or an Xp_data_available event is generated). This request results in the
generation of a XpNotify event with the detail field set to Xp_EndJobEvent.

4 WINDOW rootWindow

16 unused

 Encoding: PrintStartJob Request

Number of Bytes Value or Type Description

1 base major opcode

1 7 minor opcode

2 2 request length

1 CARD8 saveData

3 unused

 Encoding: GetContextScreen Reply

Number of Bytes Value or Type Description

Functional specification

152
CDE/Motif PST

CD
En

ex
t

10.2.11 PrintStartDoc

Errors: XPBadContext, XPBadSequence, BadValue

The server takes whatever actions are necessary to define a new document. This request results in the
generation of a XpNotify event with the detail field set to Xp_StartDocEvent.

10.2.12 PrintEndDoc

Errors: XPBadContext, XPBadSequence

The current document associated with the print context ends. This request results in the generation of a
XpNotify event with the detail field set to Xp_EndJobEvent.

 Encoding: PrintEndJob Request

Number of Bytes Value or Type Description

1 base major opcode

1 8 minor opcode

2 2 request length

1 BOOL cancel

3 unused

 Encoding: PrintStartDoc Request

Number of Bytes Value or Type Description

1 base major opcode

1 9 minor opcode

2 2 request length

1 CARD8 type

3 unused

Functional specification

153
CDE/Motif PST

CDEnext

10.2.13 PrintPutDocumentData

Errors: XPBadContext, XPBadSequence, BadValue, BadDrawable, XPBadResourceID

The supplied data is added to the contents of the current job.

 Encoding: PrintEndDoc Request

Number of Bytes Value or Type Description

1 base major opcode

1 10 minor opcode

2 2 request length

1 BOOL cancel

3 unused

 Encoding: PrintPutDocumentData Request

Number of Bytes Value or Type Description

1 base major opcode

1 11 minor opcode

2 4 + (d+dp + f+fp + o+op)/4 request length

4 DRAWABLE drawable

4 CARD32 len_data

2 CARD16 len_fmt

2 CARD16 len_options

d LISTofBYTE data

dp BYTE dp=pad(d)

f STRING8 doc_fmt

fp BYTE fp=pad(f)

o STRING8 options

op BYTE op=pad(o)

Functional specification

154
CDE/Motif PST

CD
En

ex
t

10.2.14 PrintGetDocumentData

Errors: XPBadContext, XPBadSequence

Returns accumulated print data. Will return no more that max-bytes number of bytes of data.The returned
bytes-remaining specifies the number of bytes remaining to be read as of the time of processing the
XpGetDocumentData request.

10.2.15 PrintStartPage

Errors: XPBadContext, XPBadSequence, BadWindow, XPBadResourceID, BadValue

 Encoding: PrintGetDocumentData Request

Number of Bytes Value Description

1 base major opcode

1 12 minor opcode

2 3 request length

4 PCONTEXT printContext

4 CARD32 maxBufferSize

 Encoding: PrintGetDocumentData Reply sent multiple times

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 (n + p)/4 reply length

4 0 XPGetDocFinished
1 XPGetDocSecondConsumer

statusCode

4 CARD32 finishedFlag

4 CARD32 dataLen

12 unused

n LISTofBYTE data

p BYTE p=pad(n)

Functional specification

155
CDE/Motif PST

CDEnext

Window is configured, it and all of its children are cleared to their background, and Expose events are sent
to all affected windows. This request results in the generation of a XpNotify event with the detail field set
to Xp_StartPageEvent following any and all of the configure and expose events.

10.2.16 PrintEndPage

Errors: XPBadContext, XPBadSequence

The rendering defining the page’s content ends, and if the cancel flag is false then the current page contents
are added to the contents of the job associated with the print context. This request results in the generation
of a XpNotify event with the detail field set to Xp_EndPageEvent.

10.2.17 PrintSelectInput

Errors: XPBadContext, BadValue

Specifies which print events the client is interested in.

 Encoding: PrintStartPage Request

Number of Bytes Value or Type Description

1 base? major opcode

1 13 minor opcode

2 2 request length

4 WINDOW window

 Encoding: PrintEndPage Request

Number of Bytes Value or Type Description

1 base major opcode

1 14 minor opcode

2 2 request length

1 BOOL cancel

3 unused

Functional specification

156
CDE/Motif PST

CD
En

ex
t

10.2.18 PrintInputSelected

Errors: XPBadContext

 Encoding: PrintSelectInput Request

Number of Bytes Value or Type Description

1 base major opcode

1 15 minor opcode

2 3 request length

4 PCONTEXT printContext

4 BITMASK eventMask

 Encoding: PrintInputSelected Request

Number of Bytes Value Description

1 base major opcode

1 16 minor opcode

2 2 request length

4 PCONTEXT printContext

 Encoding: PrintInputSelected Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

4 BITMASK eventMask

4 BITMASK allEventsMask

16 unused

Functional specification

157
CDE/Motif PST

CDEnext

10.2.19 PrintGetAttributes

Errors: XPBadContext, BadValue, BadAlloc

XpGetAttributes returns the name-value pairs which comprise the list of attributes in the specified
attribute class.

10.2.20 PrintGetOneAttribute

Errors: XPBadContext, BadValue, BadAlloc

 Encoding: PrintGetAttributes Request

Number of Bytes Value Description

1 base major opcode

1 17 minor opcode

2 3 request length

4 PCONTEXT printContext

1 CARD8 type

3 unused

 Encoding: PrintGetAttributes Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 (n+p)/4 reply length

4 CARD32 stringLen

20 unused

n STRING8 string

p p=pad(n)

Functional specification

158
CDE/Motif PST

CD
En

ex
t

10.2.21 PrintSetAttributes

Errors: XPBadContext, XPBadSequence, BadValue, BadMatch, BadAlloc

XpSetAttributes sets the names and values for all attributes within the specified attribute class.

 Encoding: PrintGetOneAttribute Request

Number of Bytes Value Description

1 base major opcode

1 19 minor opcode

2 4 + (n+p)/4 request length

4 PCONTEXT printContext

4 CARD32 nameLen

1 CARD8 type

3 unused

n STRING8 name

p p=pad(n)

 Encoding: PrintGetOneAttribute Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

2 CARD16 sequence number

4 (n+p)/4 reply length

4 CARD32 valueLen

20 unused

n STRING8 value

p p=pad(n)

Functional specification

159
CDE/Motif PST

CDEnext

10.2.22 PrintGetPageDimensions

Errors: XPBadContext

Retrieve dimensions related to the currently select media.

 Encoding: PrintSetAttributes Request

Number of Bytes Value Description

1 base major opcode

1 18 minor opcode

2 4 + (n+p)/4 request length

4 PCONTEXT printContext

4 CARD32 stringLen

1 CARD8 type

1 CARD8 rule

2 unused

n STRING8 string

p BYTE p=pad(n)

 Encoding: PrintGetPageDimensions Request

Number of Bytes Value or Type Description

1 base major opcode

1 21 minor opcode

2 2 request length

4 PCONTEXT print context

 Encoding: PrintGetPageDimensions Reply

Number of Bytes Value or Type Description

1 1 Reply

Functional specification

160
CDE/Motif PST

CD
En

ex
t

10.2.23 PrintQueryScreens

Errors: none

Retrieve a list of screens supporting the Xp Extension.

1 unused

2 CARD16 sequence number

4 0 reply length

2 CARD16 width

2 CARD16 height

2 CARD16 rx

2 CARD16 ry

2 CARD16 rwidth

2 CARD16 rheight

12 unused

 Encoding: PrintQueryScreens Request

Number of Bytes Value or Type Description

1 base major opcode

1 22 minor opcode

2 2 request length

 Encoding: PrintQueryScreens Reply

Number of Bytes Value or Type Description

1 1 Reply

1 unused

 Encoding: PrintGetPageDimensions Reply

Number of Bytes Value or Type Description

Functional specification

161
CDE/Motif PST

CDEnext

10.3 Event Protocol Specifications

10.3.1 PrintNotify

2 CARD16 sequence number

4 listCount reply length

4 CARD32 listCount

20 unused

4 * listCount LISTofROOTWINDOW list of root windows

ROOTWINDOW

4 WINDOW rootWindow

 Encoding: PrintNotify

Number of Bytes Type or Value Description

1 0 + base code

1 0 XPStartJobNotify
1 XPEndJobNotify
2 XPStartDocNotify
3 XPEndDocNotify
4 XPStartPageNotify
5 XPEndPageNotify

detail

2 CARD16 sequence number

4 PCONTEXT print context

1 BOOL cancel flag

23 unused

 Encoding: PrintQueryScreens Reply

Number of Bytes Value or Type Description

Functional specification

162
CDE/Motif PST

CD
En

ex
t

10.3.2 AttributeNotify

10.4 Error Protocol Specifications

10.4.1 BadContext
This error is generated whenever one of the Xp extension requests is made with an invalid printer context
ID.

10.4.2 BadSequence
This error is generated when a Xp request is made out of sequence. This will happen if, for instance, a
StartPage request is recieved prior to the receipt of a StartJob request.

 Encoding: AttributeNotify

Number of Bytes Type or Value Description

1 1 + base code

1 1 XPJobAttr
2 XPDocAttr
3 XPPageAttr
4 XPPrinterAttr
5 XPServerAttr
6 XPMediumAttr (future use)
7 XPSpoolerAttr (future use)

detail

2 CARD16 sequence number

4 PCONTEXT print context

24 unused

 Encoding: BadContext

Number of Bytes Value or Type Description

1 0 Error

1 0 + base code

2 CARD16 sequence number

Functional specification

163
CDE/Motif PST

CDEnext

10.4.3 BadResourceID
This error is generated when an XID (X-Resource) is valid in general, not not valid when used as an X-
Resource in the X Print Extension. Most often, the error is generated when an XID is created outside the
applicable print context or on the wrong screen.

EXAMPLES

FILES

SEE ALSO

 Encoding: BadSequence encoding

Number of Bytes Value or Type Description

1 0 Error

1 1 + base code

2 CARD16 sequence number

 Encoding: BadResourceID encoding

Number of Bytes Value or Type Description

1 0 Error

1 2 + base code

2 CARD16 sequence number

Functional specification

164
CDE/Motif PST

CD
En

ex
t

165
CDE/Motif PST

CDEnext

APPENDIX A Application Print Dialogs

10.5 Introduction

From the user’s perspective in a typical application, printing is done through a series of dialogs, the first one being
initiated by selecting, for example, the pulldown menu <File><Print...>. This chapter documents a set of dialogs
provided by CDEnext for use primarily by applications that perform X printing. The initial print dialog is provided
as the DtPrintSetupBox widget, and includes two convenience functions for creating the widget:
DtCreatePrintSetupBox and DtCreatePrintSetupDialog. A dialog for selecting X Printers may be
invoked by DtPrintSetupBox. This dialog is known as the DtPrinterSelectionDialog. A dialog for
obtaining additional printer information, the DtPrinterInfoDialog, may be invoked from either the
DtPrintSetupBox or the DtPrinterSelectionDialog. All of these dialogs are considered part of the
DtPrintSetupBox widget, and as such, no external API exists for these dialogs.

Although DtPrintSetupBox is designed primarily for X printing, it is also designed for use as a general
application print dialog for use in any CDEnext application that provides printing.

The remaining sections of this chapter document the CDEnext application print dialogs and convenience functions:

u “DtPrintSetupBox”
u “DtCreatePrintSetupBox”
u “DtCreatePrintSetupDialog”
u “DtPrintFillSetupData”
u “DtPrintCopySetupData”
u “DtPrintFreeSetupData”
u “DtPrintResetConnection”
u “DtPrintSetupProc”
u “DtPrinterSelectionDialog” (includes DtPrinterInfoDialog)

Functional specification

166
CDE/Motif PST

CD
En

ex
t

10.6 DtPrintSetupBox

10.6.1 Short Description

DtPrintSetupBox is a widget that is typically the initial window used to set various options prior to printing
from an application. This widget is primarily designed for use by applications that utilize the X Print Service.
However, the widget interface is also designed to be flexible enough for use by applications employing other
printing methods.

10.6.2 Long Description
NAME

DtPrintSetupBox - Application Print Setup Widget

SYNOPSIS

#include <Dt/Print.h>

DESCRIPTION

DtPrintSetupBox is a widget that is typically the initial window used to set various options prior to
printing from an application. This widget is primarily designed for use by applications that utilize the X
Print Service. However, the widget interface is also designed to be flexible enough for use by applications
employing other printing methods.

Figure 10-1. DtPrintSetupBox - Application Print Setup Widget

Functional specification

167
CDE/Motif PST

CDEnext

The DtPrintSetupBox is organized based on generic print options and application specific print
options. The sections are clearly demarcated with separators to set off the generic section from the
application specific section(s). By utilizing the DtNworkAreaLocation resource, the application
developer may choose to utilize an area above the generic section, below the generic section, or both above
and below the generic section.

The four default buttons (Print, Setup, Cancel, and Help) are considered generic buttons. Applications may
create additional pushbuttons as children of DtPrintSetupBox. These buttons will be laid out
following the Print button.

The Printer Name combo box contains the X Printer Specifier of the printer to be used for the print job.
The X Printer Specifier is an identifier that uniquely identifies an X Printer. The format of this specifier is
printerName@host:display.

Descendants
DtPrintSetupBox creates the descendents shown in the following table. An application can use
XtNameToWidget to gain access to the named descendent. In addition, a user or an application can use
the descendent name when specifying resource values.

Table 10-1: DtPrintSetupBox Descendents

Named Descendent Class Identity

BottomWorkAreaSeparator XmSeparatorGadget Separator above the bottom work area

ButtonSeparator XmSeparatorGadget Separator above the pushbuttons

Cancel XmPushButtonGadget Cancel button

Copies XmSimpleSpinBox SpinBox containing the number of copies

CopiesLabel XmLabelGadget Label for the Copies SpinBox

Description XmLabelGadget Printer description

DestFile XmToggleButton Print to file radio button

DestPrinter XmToggleButton Print to printer radio button

DestRadioBox XmRowColumn Manager for print to printer and print to file
radio buttons

FileName XmTextField File name field

FileNameLabel XmLabelGadget Label for the file name field

Help XmPushButtonGadget Help button

Info XmPushButtonGadget Printer information button

Name XmComboBox Printer name

NameLabel XmLabelGadget Label for the printer name field

Print XmPushButtonGadget Print button

Functional specification

168
CDE/Motif PST

CD
En

ex
t

Classes
The DtPrintSetupBox inherits behavior and resources from the Core, Composite, Constraint,
XmManager, and XmBulletinBoard superclasses.

The class pointer is dtPrintSetupBoxWidgetClass.

The class name is DtPrintSetupBox.

New Resources

SelectFile XmPushButtonGadget Select File button

SelectPrinter XmPushButtonGadget Select Printer button

Setup XmPushButtonGadget Setup button

TopWorkAreaSeparator XmSeparatorGadget Separator below the top work area

Table 10-2: DtPrintSetupBox Resources

Name Class/Type Access Default Value

DtNcancelCallback DtCCancelCallback/
XtCallbackList

C NULL

DtNclosePrintDisplayCall-
back

DtCCloseDisplayCall-
back/XtCallbackList

C NULL

DtNcopies DtCCopies/int CSG 1

DtNdescription DtCDescription/
XmString

CSG dynamic

DtNfileName DtCPrintToFileName/
String

CSG NULL

DtNminimizeButtons DtCminimizeButtons/
Boolean

CSG False

DtNoptionCount DtCOptionCount/
Cardinal

CSG 0

DtNoptions DtCOptions/
XtPointer

CSG NULL

DtNprintCallback DtCPrintCallback/
XtCallbackList

C NULL

DtNprintDestination DtCPrintDestination/
XtEnum

CSG DtPRINT_TO_PRINTER

Table 10-1: DtPrintSetupBox Descendents

Named Descendent Class Identity

Functional specification

169
CDE/Motif PST

CDEnext

DtNcancelCallback
Specifies the list of callbacks that is called when the Cancel button is activated. The
callback reason is DtPRINT_CR_CANCEL.

DtNclosePrintDisplayCallback
When the value of the DtNprintSetupMode resource is DtPRINT_SETUP_XP, the
DtPrintSetupBox will manage the X printing display connection and print context.
As such, DtNclosePrintDisplayCallback is provided to allow an application to
perform any desired processing (such as destroying windows created on the print
display) before the DtPrintSetupBox destroys the current print context and closes
the current print display connection.

This callback list will not be called if the value of the DtNprintSetupMode resource is
anything other than DtPRINT_SETUP_XP.

The callback reason is DtPRINT_CR_CLOSE_PRINT_DISPLAY.

DtNcopies
The number of copies of the document to print. This is a spin box into which the user
may enter a positive integer.

DtNdescription
A description of the printer as provided by the system administrator.

DtNfileName
Specifies the name of the destination file. Setting this resource will update the value of
the File Name text field.

DtNprinterInfoProc DtCPrinterInfoProc/
DtPrintSetupProc

CSG dynamic

DtNprinterName DtCPrinter/String CSG dynamic

DtNprintSetupMode DtCPrintSetupMode/
XtEnum

CG DtPRINT_SETUP_XP

DtNselectFileProc DtCSelectFileProc/
DtPrintSetupProc

CSG default procedure

DtNselectPrinterProc DtCSelectPrinterProc/
DtPrintSetupProc

CSG dynamic

DtNsetupCallback DtCSetupCallback/
XtCallbackList

C NULL

DtNverifyPrinterProc DtCVerifyPrinterProc/
DtPrintSetupProc

CSG dynamic

DtNworkAreaLocation DtCworkAreaLocation/
XtEnum

CSG DtWORK_AREA_BOTTOM

Table 10-2: DtPrintSetupBox Resources

Name Class/Type Access Default Value

Functional specification

170
CDE/Motif PST

CD
En

ex
t

DtNminimizeButtons
If false, sets the dimensions of all of the buttons at the bottom of the widget to the width
of the widest button and the height of the tallest button. If true, the dimensions of the
buttons are not altered.

DtNoptionCount
The number of XrmOptionDescRec records specified in DtNoptions. This value is
passed as the num_options argument to XtDisplayInitialize when the
DtPrintSetupBox establishes a connection to an X Print Server

If the value of the DtNprintSetupMode resource is anything other than
DtPRINT_SETUP_XP, this resource is ignored.

DtNoptions
A pointer to a list of XrmOptionDescRec records that the DtPrintSetupBox will
pass unaltered as the options argument to XtDisplayInitialize when the
DtPrintSetupBox establishes a connection to an X Print Server. The
DtPrintSetupBox does not make an internal copy of the storage pointed to by this
resource. It is the caller’s responsibility to ensure that the value of this resource points to
a valid storage location or NULL for the lifetime of the widget instance.

If the value of the DtNprintSetupMode resource is anything other than
DtPRINT_SETUP_XP, this resource is ignored.

DtNprintCallback
Specifies the list of callbacks that is called when the Print button is activated. The
callback reason is DtPRINT_CR_PRINT. This callback is used to initiate the print job.

DtNprintDestination
Indicates where the print output should be directed. Valid values for this resource are:

DtPRINT_TO_FILE
Direct print output to a file. The destination file name is indicated by the
DtNfileName resource. Setting this value will cause the Print to File radio
button to be selected, enable the File Name label and text field, and enable
the Select File button.

DtPRINT_TO_PRINTER
Direct print output to a printer. The destination printer is indicated by the
DtNprinterName resource. Setting this value will cause the Print to
Printer radio button to be selected, disable the File Name label and text
field, and disable the Select File button.

DtNprinterInfoProc
This resource specifies the procedure that will be used to present printer information in
response to activation of the Printer Information button. The printer selection dialog
presented by the default DtNselectPrinterProc will also call this procedure in
response to activation of its Printer Information button. If the value of the
DtNprintSetupMode resource is DtPRINT_SETUP_XP, a default procedure that
presents a printer information dialog is used. For other values of DtNprintSetupMode,
the default value of the DtNprinterInfoProc is NULL.

Functional specification

171
CDE/Motif PST

CDEnext

This procedure typically does not update either DtPrintSetupBox resources or X
Print Service attributes.

The return value of this procedure is ignored by DtPrintSetupBox. However, it is
recommended that the procedure follow the conventions presented in the
“DtPrintSetupProc” section to ensure future compatibility.

DtNprinterName
The name of the printer to send the print job to.

If the value of the DtNprintSetupMode resource is DtPRINT_SETUP_XP, setting
this resource will update the Printer Name field based on the value of the
XpPrinterNameMode XRM resource. See the “EXTERNAL INFLUENCES” section
below for more information.

If the value of the DtNprintSetupMode resource is DtPRINT_SETUP_PLAIN,
setting this resource will update the value of the Printer Name text field with the value of
this resource.

DtNprintSetupMode
Instructs the widget as to whether or not it is being used in an application that utilizes the
X Print Service. If so, then the widget will manage the X printing display connection and
print context, and provide defaults for a number of X printing operations, such as printer
selection and information dialogs, and printer verification. Refer to individual resource
descriptions to determine if and how they are affected by the value of this resource.

Valid values for this resource are:

DtPRINT_SETUP_PLAIN
This widget will be used by an application that performs its own print
document format generation and print job submission.

DtPRINT_SETUP_XP
This widget will be used by an application that utilizes the X Print Service
to perform print document format generation and print job submission.

DtNselectFileProc
This resource specifies the procedure that will be used in response to activation of the
Select File button. The default value for this resource is a pointer to a procedure which
will invoke an XmFileSelectionBox dialog to select a file name. If the user cancels
the file selection dialog no DtPrintSetupBox components will be updated. If the
user selects a file name, the file name will be set as the value for the DtNfileName
resource.

This procedure communicates the newly selected file name to the DtPrintSetupBox
by setting the DtNfileName resource. Since the default procedure presents a File
Selection Dialog, the DtNfileName resource is actually set after the procedure returns,
in response to the user activating the File Selection Dialog’s Ok pushbutton.

The return value of this procedure is ignored by DtPrintSetupBox. However, it is
recommended that the procedure follow the conventions presented in the
“DtPrintSetupProc” section to ensure future compatibility.

Functional specification

172
CDE/Motif PST

CD
En

ex
t

DtNselectPrinterProc
This resource specifies the procedure that will be used in response to activation of the
Select Printer button. If the value of the DtNprintSetupMode resource is
DtPRINT_SETUP_XP, a default procedure that invokes a
DtPrinterSelectionDialog is used. If the user cancels the printer selection
dialog no DtPrintSetupBox components will be updated. If the user selects a
printer, the printer will be set as the value for the DtNprinterName resource.

This procedure communicates the newly selected printer name to the
DtPrintSetupBox by setting the DtNprinterName resource. Since the default
procedure presents a Printer Selection Dialog, the DtNprinterName resource is actually
set after the procedure returns, in response to the user activating the Printer Selection
Dialog’s Ok pushbutton.

If the value of the DtNprintSetupMode resource is anything other than
DtPRINT_SETUP_XP, the default value of the DtNselectPrinterProc is NULL.

The return value of this procedure is ignored by DtPrintSetupBox. However, it is
recommended that the procedure follow the conventions presented in the
“DtPrintSetupProc” section to ensure future compatibility.

DtNsetupCallback
Specifies the list of callbacks that is called when the Setup button is activated. The
callback reason is DtPRINT_CR_SETUP. This callback is used to initiate a detailed
setup dialog, such as the Print Dialog Manager.

DtNverifyPrinterProc
This resource specifies the procedure that will be used to verify the current value of the
DtNprinterName resource before any operation requiring a valid printer is performed.
If the current value of the DtNprinterName resource is NULL, this procedure will set a
default printer as the value of the DtNprinterName resource.

If this procedure provides a default printer name, or a fully qualified X printer name, it
should communicate the new name to the DtPrintSetupBox by setting the
DtNprinterName resource before returning.

If the value of the DtNprintSetupMode resource is DtPRINT_SETUP_XP, a default
procedure will be set as the value of the DtNverifyPrinterProc resource. This default
procedure will verify the X printer, open a print display connection by calling
XOpenDisplay, create a print context by calling XpCreateContext, and set the
print context by calling XpSetContext. This procedure does not call
XtDisplayInitialize for the new display connection; the DtPrintSetupBox
is responsible for Xt display initialization. The procedure communicates the new print
display and context to the DtPrintSetupBox by updating the print_data-
>print_display and print_data->print_context elements of the callback
structure prior to returning.

If the value of the DtNprintSetupMode resource is anything other than
DtPRINT_SETUP_XP, the default value of the DtNverifyPrinterProc is NULL.

If the value of the DtNverifyPrinterProc resource is NULL, the printer name is always
considered valid.

Functional specification

173
CDE/Motif PST

CDEnext

If this procedure determines the printer name is valid or sets a valid printer name (and X
printer connection information), it should return DtPRINT_SUCCESS. If the printer
name is invalid or no valid default can be determined, this procedure should return
DtPRINT_FAILURE.

DtNworkAreaLocation
Indicates how to position work area children within the DtPrintSetupBox. Possible
values are:

DtWORK_AREA_BOTTOM
A single work area child may be added, and will be placed below the
generic controls and above the pushbuttons at the bottom of the window. A
managed separator will be placed between the work area and the generic
controls. This is the default.

DtWORK_AREA_TOP
A single work area child may be added, and will be placed above the
generic controls and below the top of the window. A managed separator
will be placed between the work area and the generic controls.

DtWORK_AREA_TOP_AND_BOTTOM
Two work area children may be added. The first work area created will
become the top work area, positioned with a separator as for
DtWORK_AREA_TOP, and the second will become the bottom work area,
positioned with a separator as for DtWORK_AREA_BOTTOM.

The effect of adding more work area children than indicated by the value of
DtNworkAreaLocation is undefined.

Inherited Resources
The DtPrintSetupBox inherits resources from the XmBulletinBoard, XmManager,
Constraint, Composite, and Core superclasses. Please refer to the reference pages for these
superclasses for inherited resources and their descriptions.

The DtPrintSetupBox redefines the default value of the XmBulletinBoard resource
XmNnoResize as True.

Callback And Procedure Resource Information
DtPrintSetupBox defines a new structure, DtPrintSetupData, that is passed to callbacks and
procedure resource values. For callbacks only, DtPrintSetupBox defines a new callback structure,
DtPrintSetupCallbackStruct. Not all fields in these structures are valid for all callbacks and
procedures. For callbacks, the application must first look at the reason field, and use only the structure
members that are valid for that particular reason. For each procedure, the application should only reference
structure members that are defined as valid for that particular procedure. The DtPrintSetupData and
DtPrintSetupCallbackStruct structures are defined as follows:

typedef struct
{

String printer_name;
Display *print_display;
XPContext print_context;

Functional specification

174
CDE/Motif PST

CD
En

ex
t

XtEnum destination;
String dest_info;

} DtPrintSetupData;

printer_name Contains the current value of the DtNprinterName resource.

print_display If DtNprintSetupMode is DtPRINT_SETUP_XP, print_display
contains a pointer to the Display structure for the current X Printer.
XtDisplayInitialize is guaranteed to have been called for
print_display prior to the DtPrintSetupBox calling any callback.
For other values of DtNprintSetupMode, this field is NULL.

print_context If DtNprintSetupMode is DtPRINT_SETUP_XP, print_context
contains the print context handle for the current X Printer.
XpSetContext is guaranteed to have been called for print_context
on print_display prior to the DtPrintSetupBox calling any
callback. For other values of DtNprintSetupMode, this field is NULL.

destination Contains the current value of the DtNprintDestination resource.

dest_info Additional information about the print destination as indicated by the
destination field.

If destination is DtPRINT_TO_FILE this field contains the name of
the file to print to.

If destination is DtPRINT_TO_PRINTER this field contains the
name of the currently selected printer as determined by the current value of
the XpPrinterNameMode resource. This is useful for display within
dialogs displaying print status, etc. because it is the printer name as
presented to the user in the DtPrintSetupBox.

typedef struct
{

int reason;
XEvent *event;
DtPrintSetupData *print_data;

} DtPrintSetupCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback. It can be NULL.

print_data Points to a DtPrintSetupData structure containing additional callback
information.

Functional specification

175
CDE/Motif PST

CDEnext

The following table indicates for each callback reason, which DtPrintSetupCallbackStruct and
DtPrintSetupData members are valid:

The following table indicates for each procedure resource, which DtPrintSetupData members are
valid:

Translations
DtPrintSetupBox inherits translations from XmBulletinBoard.

Virtual Bindings
The bindings for virtual keys are implementation-dependent. For information about bindings for virtual
buttons and keys, see VirtualBindings(3X).

EXTERNAL INFLUENCES

The following specifies application resources and environment variables that will influence the behavior of
the DtPrintSetupBox. If a given resource is defined, it will have precedence over the corresponding
environment variable. There is no corresponding environment variable for the XpPrinterNameMode
resource.

Table 10-3: Valid Fields By Callback Reason

Reason Valid Fields

DtPRINT_CR_CANCEL reason, event

DtPRINT_CR_CLOSE_PRINT_DISPLAY reason, printer_name,
print_display, print_context

DtPRINT_CR_PRINT reason, event, printer_name,
print_display, print_context,
destination, dest_info

DtPRINT_CR_SETUP reason, event, printer_name,
print_display, print_context

Table 10-4: Valid Fields By Procedure Resource Name

Procedure Valid Fields

DtNprinterInfoProc printer_name, print_display,
print_context

DtNselectFileProc destination, dest_info

DtNselectPrinterProc printer_name

DtNverifyPrinterProc printer_name, print_display,
print_context

Functional specification

176
CDE/Motif PST

CD
En

ex
t

XRM Application Resources
XpPrinter

This variable defines the default destination X Printer Specifier for the
DtPrintSetupBox. If the specifier is just a printerName, the host:display portion of
the specifier is obtained by checking if the X Server to which the client application is
connected to is an X Print Server managing printerName, otherwise the first server in the
XpServerList or XPSERVERLIST that manages the printer will be used. If the
:display number is omitted, :0 is assumed.

Example: Dtmail*XpPrinter: laser_1@callisto:6

XpPrinterNameMode
This resource indicates how an X Printer Specifier shall be shown in the Printer Name
combo box text. Valid values for this resource are:

DtSHORT_NAME
Display only the printerName portion of the X Printer Specifier.

DtMEDIUM_NAME
Display the printer name as a combination of the printerName and the host
portions of the X Printer Specifier with an intervening “at” (@) symbol. For
example “printer@host”.

DtLONG_NAME
Display the fully qualified X Printer Specifier. For example
“printer@host:6”

If this resource is not specified, DtPrintSetupBox will assume a default of
DtSHORT_NAME.

XpPrinterList
This resource defines the initial set of X Printer Specifiers shown in the Printer Name
combo box list.

The resource value is a whitespace-delimited list of partially or fully specified X Printer
Specifiers. When the user selects a specifier from this list, if the specifier is just a
printerName, the host:display portion of the specifier is obtained by checking if the X
Server to which the client application is connected to is an X Print Server managing
printerName, otherwise the first server in the XpServerList or XPSERVERLIST that
manages the printer will be used. If the :display number is omitted, :0 is assumed.

Example:

 *xpPrinterList: laser laser2@argon:3 laser7@xenon

XpServerList
This resource contains a list of X Print Server specifiers. Each entry in the list is of the
form host:display, and is separated from other entries by whitespace.
DtPrintSetupBox uses this list to fully qualify partial X Printer Specifiers consisting
of just the printerName.

Example: *.XpServerList: hanz:6 franz:6 ahnold:6

Functional specification

177
CDE/Motif PST

CDEnext

Environment Variables
PDPRINTER,
LPDEST,
PRINTER If the XPRINTER environment variable and the XpPrinter resource are not specified,

the DtPrintSetupBox will check the environment variables (in order) PDPRINTER,
LPDEST, and PRINTER to obtain a printerName which can be used to generate an X
Printer Specifier to use for the default X Printer shown in the Printer Name combo box
text field. The host:display portion of the specifier is obtained by checking if the X
Server to which the client application is connected to is an X Print Server managing
printerName. If not, the list of X Print Servers specified in the XpServerList or
XPSERVERLIST is queried, until the first X Printer with a matching printerName is
found.

XPRINTER The specification of the XPRINTER environment variable is the same as the XpPrinter
resource.

XPRINTERLIST The specification of the XPRINTERLIST environment variable is the same as the
XpPrinterList resource.

XPSERVERLIST The specification of the XPSERVERLIST environment variable is the same as the
XpServerList resource.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

SEE ALSO

u The “DtPrintSetupProc”, “DtCreatePrintSetupDialog”, “DtPrintSetupProc”, and
“DtPrinterSelectionDialog” sections in this chapter.

u The “X Print Service Extension Library” and “Dt Print Dialog Manager” chapters.

Functional specification

178
CDE/Motif PST

CD
En

ex
t

10.7 DtCreatePrintSetupBox

10.7.1 Short Description

DtCreatePrintSetupBox is a convenience function that creates an unmanaged instance of a
DtPrintSetupBox widget, and returns its widget ID.

10.7.2 Long Description
NAME

DtCreatePrintSetupBox - convenience function to create an instance of a DtPrintSetupBox widget.

SYNOPSIS

#include <Dt/Print.h>

Widget DtCreatePrintSetupBox(
Widget parent,
const String name,
ArgList arglist,
Cardinal argcount)

ARGUMENTS

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in arglist.

RETURN VALUE

Returns the DtPrintSetupBox widget ID.

DESCRIPTION

DtCreatePrintSetupBox is a convenience function that creates an unmanaged instance of a
DtPrintSetupBox widget, and returns its widget ID.

RELATED INFORMATION

See also “DtPrintSetupBox”, “DtCreatePrintSetupDialog”.

Functional specification

179
CDE/Motif PST

CDEnext

10.8 DtCreatePrintSetupDialog

10.8.1 Short Description

DtCreatePrintSetupDialog is a convenience function that creates an instance of a dialog containing a
DtPrintSetupBox widget, and returns the DtPrintSetupBox widget ID.

10.8.2 Long Description
NAME

DtCreatePrintSetupDialog - convenience function to create a DtPrintSetupBox dialog.

SYNOPSIS

#include <Dt/Print.h>

Widget DtCreatePrintSetupDialog(
Widget parent,
const String name,
ArgList arglist,
Cardinal argcount)

ARGUMENTS

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in arglist.

RETURN VALUE

Returns the DtPrintSetupBox widget ID.

DESCRIPTION

DtCreatePrintSetupDialog is a convenience function that creates a DialogShell and an
unmanaged DtPrintSetupBox child of the DialogShell. Use XtManageChild to pop up the
print set up dialog (passing the DtPrintSetupBox as the widget parameter); use
XtUnmanageChild to pop it down.

RELATED INFORMATION

See also “DtPrintSetupBox”, “DtPrintSetupProc”.

Functional specification

180
CDE/Motif PST

CD
En

ex
t

10.9 DtPrintFillSetupData

10.9.1 Short Description

DtPrintFillSetupData is used to obtain an X printer connection in order to initiate an X printing job in
situations other than direct interaction with a DtPrintSetupBox (e.g. a “quick print” button on a toolbar). This
printer connection information can be obtained from an existing DtPrintSetupBox widget instance, or if a
DtPrintSetupBox widget instance is unavailable, DtPrintFillSetupData will provide a new X printer
connection.

10.9.2 Long Description
NAME

DtPrintFillSetupData - obtain X printer connection information

SYNOPSIS

#include <Dt/Print.h>

XtEnum DtPrintFillSetupData(
Widget wid,
DtPrintSetupData *print_data)

ARGUMENTS

wid The widget ID of a DtPrintSetupBox, or NULL if no DtPrintSetupBox is
available.

print_data A pointer to an existing DtPrintSetupData structure that
DtPrintFillSetupData will update with valid X printer connection information.
See the DtPrintSetupBox manual page for the definition of the
DtPrintSetupData structure.

RETURN VALUE

DtPRINT_SUCCESS
The X printer connection was successfully obtained.

DtPRINT_FAILURE
The X printer connection could not be established. The specific reason has been reported
by the DtPrintSetupBox to the user.

DtPRINT_INVALID_DISPLAY
The indicated X print server could not be found.

DtPRINT_NOT_XP_DISPLAY
The indicated X server does not support the X Printing Extension.

DTPRINT_NO_DEFAULT
A default printer could not be determined.

Functional specification

181
CDE/Motif PST

CDEnext

DtPRINT_NO_PRINTER
The indicated printer could not be found on the X print server, or a default printer could
not be determined.

DtPRINT_BAD_PARM
The value passed for print_data is NULL, or the the value of the
DtNprintSetupMode resource for wid is not DtPRINT_SETUP_XP.

DESCRIPTION

DtPrintFillSetupData is used to obtain an X printer connection in order to initiate an X printing
job in situations other than direct interaction with a DtPrintSetupBox (e.g. a “quick print” button on a
toolbar, or “GUI-less” printing). This X printer connection information can be obtained from an existing
DtPrintSetupBox widget instance, or if a DtPrintSetupBox widget instance is unavailable,
DtPrintFillSetupData will provide a new X printer connection.

A print job is typically initiated when the user selects the “Print” button from within a
DtPrintSetupBox widget instance. Applications may wish to provide additional avenues for the user
to initiate a print job, namely a “Quick Print” toolbar button, or a command line parameter to allow “GUI-
less” printing, when a video display is not available. DtPrintFillSetupData is designed to provide
an X printer connection in a manner consistent with DtPrintSetupBox.

For both the “Quick Print” and “GUI-less” cases, the caller may set the printer_name element of the
passed print_data in order to specify the destination X printer. DtPrintFillSetupData will treat
the passed printer_name as if the user had typed the printer name into the Printer Name text field of
the DtPrintSetupBox. The printer_name will be verified, and an X printer connection will be
established. The returned printer_name may be a fully qualified version of the passed
printer_name as a result of the printer verification process. For a description of this process, see the
DtNverifyPrinterProc resource description in the DtPrintSetupBox manual page. If
DtPrintFillSetupData decides to return a new printer_name, it will free the passed
printer_name by calling XtFree.

For the “Quick Print” button case, DtPrintFillSetupData is intended to be used with an existing
DtPrintSetupBox instance, so that the “Quick Print” button behaves as if the user had brought up a
DtPrintSetupBox, selected a printer as indicated by printer_name, and activated the “Print”
button. The following conditions are particular to this case:

u The wid parameter should be set to the widget ID of the DtPrintSetupBox instance.
DtPrintFillSetupData will fill the passed print_data structure similarly to how the
DtPrintSetupBox fills out the print_data element of the
DtPrintSetupCallbackStruct passed as call data to the DtNprintCallback list. The
only exception is that when using DtPrintFillSetupData it is the caller’s responsibility to
free the allocated memory locations pointed to by the print_data structure by calling
DtPrintFreeSetupData.

u The X printer connection returned is managed by the DtPrintSetupBox. The caller should
not destroy the print context, nor close the print display connection.

u It is not required for the DtPrintSetupBox widget instance passed via wid to have ever been
managed prior to calling DtPrintFillSetupData.

Functional specification

182
CDE/Motif PST

CD
En

ex
t

u If the passed printer_name is NULL, the current printer as indicated by the
DtNprinterName resource will be used, and returned in printer_name. If the passed
printer_name is a different printer than indicated by the current value of the
DtNprinterName resource, the resource will be updated.

u The destination and dest_info elements of the passed print_data will be set
according to the current state of the passed DtPrintSetupBox. If dest_info is set when
passed to DtPrintFillSetupBox, DtPrintFillSetupBox will free the memory by
calling XtFree if it decides to update dest_info.

u If a connection cannot be established, the DtPrintSetupBox will automatically be managed,
displaying an error message box. After dismissing the message box, the user can select a new
printer and restart the print operation, if desired.

For the “GUI-less” case, DtPrintFillSetupData is intended to provide an X printer connection, in a
manner consistent with an X printer connection established by DtPrintSetupBox, without actually
creating a DtPrintSetupBox. The following conditions are particular to this case:

u The passed wid is set to NULL.
u The X printer connection returned is managed by the caller, which means it is up to the caller to

destroy the print context (XpDestroyContext), and close the print display connection
(XCloseDisplay). Additionally the print display connection will not be initialized via
XtInitializeDisplay, as is the case if a DtPrintSetupBox widget Id is passed to
DtPrintFillSetupData.

u If NULL is passed for printer_name, DtPrintFillSetupData will determine a default
printer, using the same procedure as DtPrintSetupBox, except that XRM resources are not
available due to the lack of a video display connection, and set the printer_name field to this
default printer name upon return.

u The destination and dest_info elements of the passed print_data will be ignored by
DtPrintFillSetupData.

u The caller can free the allocated memory locations pointed to by the returned print_data
structure by calling DtPrintFreeSetupData.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

RELATED INFORMATION

See the “DtPrintSetupBox”, “DtPrintCopySetupData”, and “DtPrintFreeSetupData” sections in this chapter.

Functional specification

183
CDE/Motif PST

CDEnext

10.10 DtPrintCopySetupData

10.10.1 Short Description

Copies one DtPrintSetupData structure to another.

10.10.2 Long Description
NAME

DtPrintCopySetupData - copy one DtPrintSetupData structure to another

SYNOPSIS

#include <Dt/Print.h>

DtPrintSetupData* DtPrintCopySetupData(
DtPrintSetupData *target,
const DtPrintSetupData *source)

ARGUMENTS

target A pointer to the DtPrintSetupData structure to copy to.

source A pointer to the DtPrintSetupData structure to copy from.

RETURN VALUE

The target pointer.

DESCRIPTION

DtPrintCopySetupData is used to copy the DtPrintSetupData structure pointed to by source
to the DtPrintSetupData structure pointed to by target. Elements in target are updated only if
different than the corresponding element in source. For elements that point to allocated memory,
DtPrintCopySetupData allocates new memory for those elements updated in target. Existing
elements in target are freed using XtFree. All elements in a DtPrintSetupData structure can be
freed by calling DtPrintFreeSetupData.

If source or target is NULL the copy will not be performed.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

RELATED INFORMATION

See the “DtPrintSetupBox” and “DtPrintFreeSetupData” sections in this chapter.

Functional specification

184
CDE/Motif PST

CD
En

ex
t

10.11 DtPrintFreeSetupData

10.11.1 Short Description

Free the memory pointed to by DtPrintSetupData structure elements.

10.11.2 Long Description
NAME

DtPrintFreeSetupData - free memory pointed to by DtPrintSetupData structure elements

SYNOPSIS

#include <Dt/Print.h>

void DtPrintFreeSetupData(
DtPrintSetupData *target)

ARGUMENTS

target points to the DtPrintSetupData structure whose elements are to be freed.

RETURN VALUE

None.

DESCRIPTION

DtPrintFreeSetupData calls XtFree to deallocate memory pointed to by elements of the
DtPrintSetupData structure indicated by target. The DtPrintSetupData structure pointed to
by target is not altered by this function.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

RELATED INFORMATION

See the “DtPrintSetupBox” section in this chapter for a definition of the DtPrintSetupData structure.

Functional specification

185
CDE/Motif PST

CDEnext

10.12 DtPrintResetConnection

10.12.1 Short Description

DtPrintResetConnection is a convenience function provided by the DtPrintSetupBox widget that
allows applications to direct the widget to stop managing the print display connection. A mode parameter is
included in order to direct the widget to close the print connection by calling XpDestroyPrintContext and
XtCloseDisplay or to simply relinquish control of the connection without closing it.

10.12.2 Long Description
NAME

DtPrintResetConnection - reset the print display connection managed by a DtPrintSetupBox

SYNOPSIS

#include <Dt/Print.h>

XtEnum DtPrintResetConnection(
Widget wid,
DtPrintResetConnectionMode mode);

ARGUMENTS

wid The DtPrintSetupBox widget ID.

mode Indicates whether DtPrintResetConnection should close the X print server
connection, or simply cause the DtPrintSetupBox to cease managing the connection.

RETURN VALUE

DtPRINT_SUCCESS
DtPrintResetConnection was successful.

DtPRINT_NO_CONNECTION
An open X print server connection is not currently being managed by the
DtPrintSetupBox.

DtPRINT_BAD_PARM
The value passed for wid is NULL, or an invalid mode was passed.

DESCRIPTION

DtPrintResetConnection is a convenience function provided by the DtPrintSetupBox widget
that allows applications to direct the widget to stop managing the X print server connection. A mode
parameter is included in order to direct the widget to close the print connection by calling
XpDestroyPrintContext and XtCloseDisplay or to simply relinquish control of the connection
without closing it.

Functional specification

186
CDE/Motif PST

CD
En

ex
t

DtPrintResetConnection is intended to be used by applications that fork a child process to perform
the print rendering operation. Immediately after the fork is performed, the parent process will close its X
print server connection, and retain its connection to the video X server. The forked child on the other hand
will close its video X server connection and perform the rendering operation on the X print server
connection.

Valid values for the mode parameter are:

DtPRINT_CLOSE_CONNECTION
Set by the parent process when the application forks a child to perform the
print rendering. This will cause the DtNclosePrintDisplayCallback list
set for the passed DtPrintSetupBox to be called.

DtPRINT_RELEASE_CONNECTION
Set when the application wishes to destroy the DtPrintSetupBox
widget instance and still perform print rendering using the X print server
connection initiated by the widget. For example, the child process of an
application that forks to perform print rendering will close the video
display connection (thereby destroying the DtPrintSetupBox widget)
prior to print rendering. No DtPrintSetupBox callbacks will be called
as a result of this operation.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

Functional specification

187
CDE/Motif PST

CDEnext

10.13 DtPrintSetupProc

10.13.1 Short Description

Type definition for procedure resources of the DtPrintSetupBox widget.

10.13.2 Long Description
NAME

DtPrintSetupProc - type definition for procedure resources of the DtPrintSetupBox widget

SYNOPSIS

typedef XtEnum (*DtPrintSetupProc)(
Widget wid,
DtPrintSetupData *print_data);

ARGUMENTS

wid The widget ID of the DtPrintSetupBox.

print_data A pointer to a DtPrintSetupData structure containing print setup information
relevant to the specific procedure.

RETURN VALUE

DtPRINT_SUCCESS
The procedure completed successfully.

DtPRINT_FAILURE
The procedure encountered an error.

DtPRINT_BAD_PARM
An invalid parameter was passed to the procedure.

DESCRIPTION

DtPrintSetupProc is the type definition used for DtPrintSetupBox procedure resources. Each
procedure is passed the widget ID of the DtPrintSetupBox via wid, and a structure containing
information needed to perform the particular operation via print_data. If a procedure needs to update
the DtPrintSetupBox it should do so by setting resources as indicated by the procedure resource
description. The only exception to this is when the DtNverifyPrinterProc is used to verify X printers. In
this case, the proc may update the print_display and print_context elements of the passed
DtPrintSetupData structure.

EXAMPLES

Sample code can be found in the /proj/cde/examples/dtprint directory.

Functional specification

188
CDE/Motif PST

CD
En

ex
t

FILES

The DtPrintSetupProc type is defined in the Dt/Print.h include file.

RELATED INFORMATION

See the “DtPrintSetupBox” section in this chapter.

Functional specification

189
CDE/Motif PST

CDEnext

10.14 DtPrinterSelectionDialog

10.14.1 Short Description

The DtPrinterSelectionDialog is provided to allow the user to select an X printer from a complete list of
printers for the client’s video server, provided it supports the Xp extension, plus each server indicated by either the
XpServerList resource or the XPSERVERLIST environment variable. The user typically selects one of the
printers and chooses the OK button to return the selected printer to the caller.

10.14.2 Long Description
NAME

DtPrinterSelectionDialog - dialog for X Printer selection

DESCRIPTION

The DtPrinterSelectionDialog is provided to allow the user to select an X printer from a complete list of
printers for the client’s video server, provided it supports the Xp extension, plus each server indicated by either the
XpServerList resource or the XPSERVERLIST environment variable. The user typically selects one of the
printers and chooses the OK button to return the selected printer to the caller.

Figure 10-1. Printer Selection Dialog

The next section describes each of the DtPrinterSelectionDialog controls in detail.

Control Descriptions
Printers List

This is a list box containing all of the X Printers available on the print servers.

If the X server used to display this dialog is also an X print server, its printers will appear
at the front of the list. Printers from additional servers specified by the XpServerList
XRM resource or the XPSERVERLIST environment variable follow.

Functional specification

190
CDE/Motif PST

CD
En

ex
t

In order to select a printer to return to the caller, the user can single-click on the desired
item, and activate the OK button, or simply double-click on the desired item.

OK Button
When the OK button is selected, the dialog is dismissed, and the currently selected X
printer is returned to the caller.

Printer Information Button
Activating the “Info...” button displays the DtPrinterInfoDialog. This dialog
presents additional information about the currently highlighted X Printer in the list. The
information fields presented are the printer description, the printer model, the X Printer
Specifier, and the document format used to generate documents sent to this X Printer.

Figure 10-2. DtPrinterInfoDialog - X Printer Information

Cancel Button
When the Cancel button is selected, the dialog is dismissed, and no X printer name is
returned.

EXTERNAL INFLUENCES

The list presented by the Printer Selection Dialog is influenced by either the XpServerList XRM
application resource or the XPSERVERLIST environment variable. If specified, the resource takes
precedence. See the “DESCRIPTION” section above for more information.

SEE ALSO

u The “DtPrintSetupBox” section in this chapter.

191
CDE/Motif PST

CDEnext

APPENDIX B Glossary

10.15 Fundamental DT Print Service Terms

X Print Extension
Structured as a standard X extension, the extension that provides functionality to
delineate “print jobs” and “pages”.

X Print Extension API
The end-user API representing the X Print Extension.

X Print Extension Protocol
The wire-protocol existing between the X Print Extension API and the X Print Server.

DT Print Dialog Manager
A stand-alone component that interfaces with the X Print Service and provides setup
dialogs used to configure a print job.

X Print Service
The all inclusive term that describes the collection of components which allow X
rendering on non-display devices. The core components include: the X Print Server, the
DT Print Dialog Manager, and the X Print Extension API.

X Print Server
A standard X server that has been modified to include the X Print Extension and any
number of ddx drivers that can generate page description languages.

X Printer A printer served by an X Print Server.

X Printer Specification
A unique identifier for an X Printer. The format of the specifier is
printerName@host:display.

10.16 Other non DT Print Service Specific Terms

ddx Short for device dependent X, a single module in an X-Server which is capable of
driving a particular piece of display hardware, or in the case of the X Print Service, of
generating a page description language (e.g. PCL).

Functional specification

192
CDE/Motif PST

CD
En

ex
t

