
X11 Input Extension Protocol Specification

Version 1.0

X Consortium Standard

X Version 11, Release 6.9/7.0

Mark Patrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company and Ardent Computer
Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. Ardent and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided "as is" without express or implied
warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ‘‘Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.
THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window System is a trademark of The Open Group.

1.1. Input Extension Overview
This document defines an extension to the X11 protocol to support input devices other than the
core X keyboard and pointer. An accompanying document defines a corresponding extension to
Xlib (similar extensions for languages other than C are anticipated). This first section gives an
overview of the input extension. The next section defines the new protocol requests defined by
the extension. We conclude with a description of the new input events generated by the additional
input devices.

1.2. Design Approach
The design approach of the extension is to define requests and events analogous to the core
requests and events. This allows extension input devices to be individually distinguishable from
each other and from the core input devices. These requests and events make use of a device iden-
tifier and support the reporting of n-dimensional motion data as well as other data that is not
reportable via the core input events.

1.3. Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.
The X keyboard is used to generate input that client programs can detect.
The X keyboard and X pointer are referred to in this document as the core devices, and the input
ev ents they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify)
are known as the core input events. All other input devices are referred to as extension input
devices and the input events they generate are referred to as extension input events.

Note
This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. These requests may affect the synchronization of events from extension
devices. See the explanation in the section titled "Event Synchronization and Core
Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation-dependent. Requests are defined that allow client programs to change which physical
devices are used as the core devices.

1.4. Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices.
A client that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the ListInputDevices request, which will return a
list of all devices that can be opened by the X server. A client can then open one or more of these
devices using the OpenDevice request, specify what events they are interested in receiving, and
receive and process input events from extension devices in the same way as events from the X

1

X Input Extension Protocol Specification X11, Release 6.9/7.0

keyboard and X pointer. Input events from these devices are of extension types (DeviceKey-
Press, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify,
etc.) and contain a device identifier so that events of the same type coming from different input
devices can be distinguished.
Any kind of input device may be used as an extension input device. Extension input devices may
have 0 or more keys, 0 or more buttons, and may report 0 or more axes of motion. Motion may
be reported as relative movements from a previous position or as an absolute position. All valua-
tors reporting motion information for a given extension input device must report the same kind of
motion information (absolute or relative).
This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input classes. Server implementors may add new classes of input devices without
changing the protocol requests. Input classes are unique numbers registered with the X Consor-
tium. Each extension input device may support multiple input classes.
All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.
Input events reported by the server to a client are of fixed size (32 bytes). In order to represent
the change in state of an input device the extension may need to generate a sequence of input
ev ents. A client side library (such as Xlib) will typically take these raw input events and format
them into a form more convenient to the client.

1.4.1. Event Classes
In the core protocol a client registers interest in receiving certain input events directed to a win-
dow by modifying that window’s event-mask. Most of the bits in the event mask are already used
to specify interest in core X events. The input extension specifies a different mechanism by
which a client can express interest in events generated by this extension.
When a client opens a extension input device via the OpenDevice request, an XDevice structure
is returned. Macros are provided that extract 32-bit numbers called ev ent classes from that struc-
ture, that a client can use to register interest in extension events via the SelectExtensionEvent
request. The ev ent class combines the desired event type and device id, and may be thought of as
the equivalent of core event masks.

1.4.2. Input Classes
Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to allow new classes of input devices to be defined at a later time without chang-
ing the semantics of these requests. The following input device classes are currently defined:

KEY
The device reports key events.

BUTTON
The device reports button events.

VALUAT OR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

2

X Input Extension Protocol Specification X11, Release 6.9/7.0

FOCUS
The device can be focused and reports focus events.

FEEDBACK
The device supports feedbacks.

OTHER
The ChangeDeviceNotify, DeviceMappingNotify, and DeviceStateNotify macros
may be invoked passing the XDevice structure returned for this device.

Each extension input device may support multiple input classes. Additional classes may be added
in the future. Requests that support multiple input classes, such as the ListInputDevices function
that lists all available input devices, organize the data they return by input class. Client programs
that use these requests should not access data unless it matches a class defined at the time those
clients were compiled. In this way, new classes can be added without forcing existing clients that
use these requests to be recompiled.

2. Requests
Extension input devices are accessed by client programs through the use of new protocol requests.
This section summarizes the new requests defined by this extension. The syntax and type defini-
tions used below follow the notation used for the X11 core protocol.

2.1. Getting the Extension Version
The GetExtensionVersion request returns version information about the input extension.

GetExtensionVersion
name: STRING

=>
present: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16

The protocol version numbers returned indicate the version of the input extension sup-
ported by the target X server. The version numbers can be compared to constants defined
in the header file XI.h. Each version is a superset of the previous versions.

2.2. Listing Av ailable Devices
A client that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the ListInputDevices request, which will return a
list of all devices that can be opened by the X server.

ListInputDevices
=>

input-devices: LISTofDEVICEINFO

where

3

X Input Extension Protocol Specification X11, Release 6.9/7.0

DEVICEINFO: [type: ATOM
id: CARD8
num_classes: CARD8
use: {IsXKeyboard, IsXPointer, IsExtensionDevice}
info: LISTofINPUTINFO
name: STRING8]

INPUTINFO: {KEYINFO, BUTTONINFO, VALUAT ORINFO}

KEYINFO: [class: CARD8
length: CARD8
min-keycode: KEYCODE
max-keycode: KEYCODE
num-keys: CARD16]

BUTTONINFO: [class: CARD8
length: CARD8
num-buttons: CARD16]

VALUAT ORINFO: [class: CARD8
length: CARD8
num_axes: CARD8
mode: SETofDEVICEMODE
motion_buffer_size: CARD32
axes: LISTofAXISINFO]

AXISINFO: [resolution: CARD32
min-val: CARD32
max-val: CARD32]

DEVICEMODE: {Absolute, Relative}

Errors: None

This request returns a list of all devices that can be opened by the X server, including the core X
keyboard and X pointer. Some implementations may open all input devices as part of X initial-
ization, while others may not open an input device until requested to do so by a client program.

• The information returned for each device is as follows:
The type field is of type Atom and indicates the nature of the device. Clients may determine
device types by invoking the XInternAtom request passing one of the names defined in the
header file XI.h. The following names have been defined to date:

4

X Input Extension Protocol Specification X11, Release 6.9/7.0

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATA GLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

The id is a small cardinal value in the range 0-128 that uniquely identifies the device. It is
assigned to the device when it is initialized by the server. Some implementations may not open
an input device until requested by a client program, and may close the device when the last client
accessing it requests that it be closed. If a device is opened by a client program via XOpenDe-
vice, then closed via XCloseDevice, then opened again, it is not guaranteed to have the same id
after the second open request.
The num_classes field is a small cardinal value in the range 0-255 that specifies the number of
input classes supported by the device for which information is returned by ListInputDevices.
Some input classes, such as class Focus and class Proximity do not have any information to be
returned by ListInputDevices.
The use field specifies how the device is currently being used. If the value is IsXKeyboard, the
device is currently being used as the X keyboard. If the value is IsXPointer, the device is cur-
rently being used as the X pointer. If the value is IsXExtensionDevice, the device is available for
use as an extension device.
The name field contains a pointer to a null-terminated string that corresponds to one of the
defined device types.
• InputInfo is one of: KeyInfo, ButtonInfo or ValuatorInfo. The first two fields are common

to all three:
The class field is a cardinal value in the range 0-255. It uniquely identifies the class of input for
which information is returned.
The length field is a cardinal value in the range 0-255. It specifies the number of bytes of data
that are contained in this input class. The length includes the class and length fields.
The remaining information returned for input class KEYCLASS is as follows:
min_keycode is of type KEYCODE. It specifies the minimum keycode that the device will
report. The minimum keycode will not be smaller than 8.
max_keycode is of type KEYCODE. It specifies the maximum keycode that the device will
report. The maximum keycode will not be larger than 255.
num_keys is a cardinal value that specifies the number of keys that the device has.

5

X Input Extension Protocol Specification X11, Release 6.9/7.0

The remaining information returned for input class BUTTONCLASS is as follows:
num_buttons is a cardinal value that specifies the number of buttons that the device has.
The remaining information returned for input class VALUAT ORCLASS is as follows:
mode is a constant that has one of the following values: Absolute or Relative. Some devices
allow the mode to be changed dynamically via the SetDeviceMode request.
motion_buffer_size is a cardinal number that specifies the number of elements that can be con-
tained in the motion history buffer for the device.
The axes field contains a pointer to an AXISINFO struture.
• The information returned for each axis reported by the device is:
The resolution is a cardinal value in counts/meter.
The min_val field is a cardinal value in that contains the minimum value the device reports for
this axis. For devices whose mode is Relative, the min_val field will contain 0.
The max_val field is a cardinal value in that contains the maximum value the device reports for
this axis. For devices whose mode is Relative, the max_val field will contain 0.

2.3. Enabling Devices
Client programs that wish to access an extension device must request that the server open that
device. This is done via the OpenDevice request.

OpenDevice
id: CARD8

=>

DEVICE: [device_id: XID
num_classes: INT32
classes: LISTofINPUTCLASSINFO]

INPUTCLASSINFO: [input_class: CARD8
ev ent_type_base: CARD8]

Errors: Device

This request returns the event classes to be used by the client to indicate which events the client
program wishes to receive. Each input class may report several event classes. For example, input
class Keys reports DeviceKeyPress and DeviceKeyRelease ev ent classes. Input classes are
unique numbers registered with the X Consortium. Input class Other exists to report event
classes that are not specific to any one input class, such as DeviceMappingNotify, ChangeDevi-
ceNotify, and DeviceStateNotify.

• The information returned for each device is as follows:
The device_id is a number that uniquely identifies the device.
The num_classes field contains the number of input classes supported by this device.

• For each class of input supported by the device, the InputClassInfo structure contains the fol-
lowing information:

6

X Input Extension Protocol Specification X11, Release 6.9/7.0

The input_class is a small cardinal number that identifies the class of input.
The ev ent_type_base is a small cardinal number that specifies the event type of one of the events
reported by this input class. This information is not directly used by client programs. Instead, the
Device is used by macros that return extension event types and event classes. This is described in
the section of this document entitled "Selecting Extension Device Events".
Before it exits, the client program should explicitly request that the server close the device. This
is done via the CloseDevice request.
A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single CloseDevice request will terminate that client’s access to the device.
Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, the queued events are released
when the client terminates.
If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

CloseDevice
device: DEVICE

Errors: Device

2.4. Changing The Mode Of A Device
Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use the SetDeviceMode request. The valid values are
Absolute or Relative.
This request will fail and return DeviceBusy if another client already has the device open with a
different mode. It will fail and return AlreadyGrabbed if another client has the device grabbed.
The request will fail with a BadMatch error if the requested mode is not supported by the device.

SetDeviceMode
device: DEVICE
mode: {Absolute, Relative}

Errors: Device, Match, Mode

=>
status: {Success, DeviceBusy, AlreadyGrabbed}

2.5. Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is changed to Absolute. To
initialize the valuators on such a device, use the SetDeviceValuators request.

7

X Input Extension Protocol Specification X11, Release 6.9/7.0

SetDeviceValuators
device: DEVICE
first_valuator: CARD8
num_valuators: CARD8
valuators: LISTOFINT32

Errors: Length, Device, Match, Value

=>
status: {Success, AlreadyGrabbed}

This request initializes the specified valuators on the specified extension input device. Valuators
are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion first_valuator + num_valuators, a Value error will result.
If the request succeeds, Success is returned. If the specifed device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.

2.6. Getting Input Device Controls

GetDeviceControl
device: DEVICE
control: XID

Errors: Length, Device, Match, Value

=>
controlState: {DeviceState}

where

DeviceState: DeviceResolutionState

Errors: Length, Device, Match, Value
This request returns the current state of the specified device control. The device control must be
supported by the target server and device or an error will result.
If the request is successful, a pointer to a generic DeviceState structure will be returned. The
information returned varies according to the specified control and is mapped by a structure appro-
priate for that control.
GetDeviceControl will fail with a BadValue error if the server does not support the specified con-
trol. It will fail with a BadMatch error if the device does not support the specified control.
Supported device controls and the information returned for them include:

8

X Input Extension Protocol Specification X11, Release 6.9/7.0

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
num_valuators: CARD8
resolutions: LISTofCARD32
min_resolutions: LISTofCARD32
max_resolutions: LISTofCARD32]

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.
When this control is specified, XGetDeviceControl will fail with a BadMatch error if the specified
device has no valuators.

ChangeDeviceControl
device: DEVICE
XID: controlId
control: DeviceControl

where

DeviceControl: DeviceResolutionControl

Errors: Length, Device, Match, Value
=>

status: {Success, DeviceBusy, AlreadyGrabbed}

ChangeDeviceControl changes the specifed device control according to the values specified in the
DeviceControl structure. The device control must be supported by the target server and device or
an error will result.
The information passed with this request varies according to the specified control and is mapped
by a structure appropriate for that control.
ChangeDeviceControl will fail with a BadValue error if the server does not support the specified
control. It will fail with a BadMatch error if the server supports the specified control, but the
requested device does not. The request will fail and return a status of DeviceBusy if another
client already has the device open with a device control state that conflicts with the one specified
in the request. It will fail with a status of AlreadyGrabbed if some other client has grabbed the
specified device. If the request succeeds, Success is returned. If it fails, the device control is left
unchanged.
Supported device controls and the information specified for them include:

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
first_valuator: CARD8
num_valuators: CARD8
resolutions: LISTofCARD32]

9

X Input Extension Protocol Specification X11, Release 6.9/7.0

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates that
the resolution for this valuator is not to be changed. num_valuators specifies the number of valu-
ators in the resolutions list.
When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If a resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression first_valuator + num_val-
uators, a BadValue error will result.
If the request fails for any reason, none of the valuator resolutions will be changed.

2.7. Selecting Extension Device Events
Extension input events are selected using the SelectExtensionEvent request.

SelectExtensionEvent
window: WINDOW
interest: LISTofEVENTCLASS

Errors: Window, Class, Access

This request specifies to the server the events within the specified window which are of interest to
the client. As with the core XSelectInput function, multiple clients can select input on the same
window.
XSelectExtensionEvent requires a list of event classes. An event class is a 32-bit number that
combines an event type and device id, and is used to indicate which event a client wishes to
receive and from which device it wishes to receive it. Macros are provided to obtain event classes
from the data returned by the XOpenDevice request. The names of these macros correspond to
the desired events, i.e. the DeviceKeyPress is used to obtain the event class for DeviceKeyPress
ev ents. The syntax of the macro invocation is:

DeviceKeyPress (device, event_type, event_class);
device: DEVICE
ev ent_type: INT
ev ent_class: INT

The value returned in ev ent_type is the value that will be contained in the event type field of the
XDeviceKeyPressEvent when it is received by the client. The value returned in ev ent_class is
the value that should be passed in making an XSelectExtensionEvent request to receive
DeviceKeyPress ev ents.
For DeviceButtonPress ev ents, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease ev ent for each DeviceButtonPress ev ent it receives, it should specify the
DeviceButtonPressGrab ev ent class as well as the DeviceButtonPress ev ent class. This restricts
the client in that only one client at a time may request DeviceButtonPress ev ents from the same
device and window if any client specifies this class.

10

X Input Extension Protocol Specification X11, Release 6.9/7.0

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify DeviceButtonPress or DeviceButtonPress-
Grab will cause an Access error to be generated.
If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device and
window combination.
A client may also specify the DeviceOwnerGrabButton class. If it has specified both the
DeviceButtonPressGrab and the DeviceOwnerGrabButton classes, implicit passive grabs will
activate with owner_events set to True. If only the DeviceButtonPressGrab class is specified,
implicit passive grabs will activate with owner_events set to False.
The client may select DeviceMotion ev ents only when a button is down. It does this by specify-
ing the event classes Button1Motion through Button5Motion, or ButtonMotion. An input
device will only support as many button motion classes as it has buttons.

2.8. Determining Selected Events
To determine which extension events are currently selected from a given window, use GetSelect-
edExtensionEvents.

GetSelectedExtensionEvents
window: WINDOW

=>
this-client: LISTofEVENTCLASS
all-clients: LISTofEVENTCLASS

Errors: Window

This request returns two lists specifying the events selected on the specified window. One list
gives the extension events selected by this client from the specified window. The other list gives
the extension events selected by all clients from the specified window. This information is equiv-
alent to that returned by your-event-mask and all-event-masks in a GetWindowAttributes
request.

2.9. Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.
Client programs may control extension event propagation through the use of the following two
requests.
XChangeDeviceDontPropagateList adds an event to or deletes an event from the do_not_propa-
gate list of extension events for the specified window. This list is maintained for the life of the
window, and is not altered if the client terminates.

ChangeDeviceDontPropagateList
window: WINDOW
ev entclass: LISTofEVENTCLASS

11

X Input Extension Protocol Specification X11, Release 6.9/7.0

mode: {AddToList, DeleteFromList}

Errors: Window, Class, Mode

This function modifies the list specifying the events that are not propagated to the ancestors of the
specified window. You may use the modes AddToList or DeleteFromList.

GetDeviceDontPropagateList
window: WINDOW

Errors: Window
=>

dont-propagate-list: LISTofEVENTCLASS

This function returns a list specifying the events that are not propagated to the ancestors of the
specified window.

2.10. Sending Extension Events
One client program may send an event to another via the XSendExtensionEvent function.
The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to True in the for-
warded event and to set the sequence number in the event correctly.
XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

SendExtensionEvent
device: DEVICE
destination: WINDOW
propagate: BOOL
ev entclass: LISTofEVENTCLASS
ev ent: XEVENT

Errors: Device, Value, Class, Window

2.11. Getting Motion History

GetDeviceMotionEvents
device: DEVICE
start, stop: TIMESTAMP or CurrentTime

=>
nevents_return: CARD32
mode_return: {Absolute, Relative}
axis_count_return: CARD8
ev ents: LISTofDEVICETIMECOORD

12

X Input Extension Protocol Specification X11, Release 6.9/7.0

where

DEVICETIMECOORD: [data:LISTofINT32 time:TIMESTAMP]

Errors: Device, Match

This request returns all positions in the device’s motion history buffer that fall between the speci-
fied start and stop times inclusive. If the start time is in the future, or is later than the stop time,
no positions are returned.
The data field of the DEVICETIMECOORD structure is a sequence of data items. Each item is
of type INT32, and there is one data item per axis of motion reported by the device. The number
of axes reported by the device is returned in the axis_count variable.
The value of the data items depends on the mode of the device, which is returned in the mode
variable. If the mode is Absolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum and minimum values for each axis are
reported by the ListInputDevices request.
If the mode is Relative, the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumu-
lating these relative values.

2.12. Changing The Core Devices
These requests are provided to change which physical device is used as the X pointer or X
keyboard.

Note
Using these requests may change the characteristics of the core devices. The new
pointer device may have a different number of buttons than the old one did, or the
new keyboard device may have a different number of keys or report a different range
of keycodes. Client programs may be running that depend on those characteristics.
For example, a client program could allocate an array based on the number of buttons
on the pointer device, and then use the button numbers received in button events as
indicies into that array. Changing the core devices could cause such client programs
to behave improperly or abnormally terminate.

These requests change the X keyboard or X pointer device and generate an ChangeDeviceNotify
ev ent and a MappingNotify ev ent. The ChangeDeviceNotify ev ent is sent only to those clients
that have expressed an interest in receiving that event via the XSelectExtensionEvent request.
The specified device becomes the new X keyboard or X pointer device. The location of the core
device does not change as a result of this request.
These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either
device is frozen by the active grab of another client.
These requests fail with a BadDevice error if the specified device is invalid, or has not previously
been opened via OpenDevice.

To change the X keyboard device, use the ChangeKeyboardDevice request. The specified

13

X Input Extension Protocol Specification X11, Release 6.9/7.0

device must support input class Keys (as reported in the ListInputDevices request) or the request
will fail with a BadMatch error. Once the device has successfully replaced one of the core
devices, it is treated as a core device until it is in turn replaced by another ChangeDevice request,
or until the server terminates. The termination of the client that changed the device will not
cause it to change back. Attempts to use the CloseDevice request to close the new core device
will fail with a BadDevice error.
The focus state of the new keyboard is the same as the focus state of the old X keyboard. If the
new keyboard was not initialized with a FocusRec, one is added by the ChangeKeyboardDevice
request. The X keyboard is assumed to have a KbdFeedbackClassRec. If the device was initial-
ized without a KbdFeedbackClassRec, one will be added by this request. The KbdFeedback-
ClassRec will specify a null routine as the control procedure and the bell procedure.

ChangeKeyboardDevice
device: DEVICE

Errors: Device, Match
=>

status: Success, AlreadyGrabbed, Frozen

To change the X pointer device, use the ChangePointerDevice request. The specified device
must support input class Valuators (as reported in the ListInputDevices request) or the request
will fail with a BadMatch error. The valuators to be used as the x- and y-axes of the pointer
device must be specified. Data from other valuators on the device will be ignored.
The X pointer device does not contain a FocusRec. If the new pointer was initialized with a
FocusRec, it is freed by the ChangePointerDevice request. The X pointer is assumed to have a
ButtonClassRec and a PtrFeedbackClassRec. If the device was initialized without a Button-
ClassRec or a PtrFeedbackClassRec, one will be added by this request. The ButtonClassRec
added will have no buttons, and the PtrFeedbackClassRec will specify a null routine as the con-
trol procedure.
If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with a BadDevice error.
Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevice request, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to
use the CloseDevice request to close the new core device will fail with a BadDevice error.

ChangePointerDevice
device: DEVICE
xaxis: CARD8
yaxis: CARD8

Errors: Device, Match
=>

status: Success, AlreadyGrabbed, Frozen

14

X Input Extension Protocol Specification X11, Release 6.9/7.0

2.13. Event Synchronization And Core Grabs
Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.
The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode
controls the synchronization of all other input devices. For the XGrabKeyboard and XGrabKey
requests, pointer_mode controls the synchronization of all input devices except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.14. Extension Active Grabs
Active grabs of extension devices are supported via the GrabDevice request in the same way that
core devices are grabbed using the core GrabKeyboard request, except that a Device is passed as a
function parameter. A list of events that the client wishes to receive is also passed. The Ungrab-
Device request allows a previous active grab for an extension device to be released.
To grab an extension device, use the GrabDevice request. The device must have previously been
opened using the OpenDevice request.

GrabDevice
device: DEVICE
grab-window: WINDOW
owner-events: BOOL
ev ent-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}
time:TIMESTAMP or CurrentTime

=>
status: Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable

Errors: Device, Window, Value

This request actively grabs control of the specified input device. Further input events from this
device are reported only to the grabbing client. This request overrides any previous active grab
by this client for this device.
The event-list parameter is a pointer to a list of event classes. These are used to indicate which
ev ents the client wishes to receive while the device is grabbed. Only event classes obtained from
the grabbed device are valid.
If owner-events is False, input events generated from this device are reported with respect to
grab-window, and are only reported if selected by being included in the event-list. If owner-
ev ents is True, then if a generated event would normally be reported to this client, it is reported
normally, otherwise the event is reported with respect to the grab-window, and is only reported if
selected by being included in the event-list. For either value of owner-events, unreported events
are discarded.

15

X Input Extension Protocol Specification X11, Release 6.9/7.0

If this-device-mode is Asynchronous, device event processing continues normally. If the device
is currently frozen by this client, then processing of device events is resumed. If this-device-
mode is Synchronous, the state of the grabbed device (as seen by means of the protocol) appears
to freeze, and no further device events are generated by the server until the grabbing client issues
a releasing AllowDeviceEvents request or until the device grab is released. Actual device input
ev ents are not lost while the device is frozen; they are simply queued for later processing.
If other-device-mode is Asynchronous, event processing is unaffected by activation of the grab.
If other-device-mode is Synchronous, the state of all input devices except the grabbed one (as
seen by means of the protocol) appears to freeze, and no further events are generated by the server
until the grabbing client issues a releasing AllowDeviceEvents request or until the device grab is
released. Actual ev ents are not lost while the devices are frozen; they are simply queued for later
processing.
This request generates DeviceFocusIn and DeviceFocusOut ev ents.
This request fails and returns:
• AlreadyGrabbed If the device is actively grabbed by some other client.
• NotViewable If grab-window is not viewable.
• InvalidTime If the specified time is earlier than the last-grab-time for the specified device or

later than the current X server time. Otherwise, the last-grab-time for the specified device is
set to the specified time and CurrentTime is replaced by the current X server time.

• Frozen If the device is frozen by an active grab of another client.
If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.
To release a grab of an extension device, use UngrabDevice.

UngrabDevice
device: DEVICE
time: TIMESTAMP or CurrentTime

Errors: Device

This request releases the device if this client has it actively grabbed (from either GrabDevice or
GrabDeviceKey) and releases any queued events. If any devices were frozen by the grab,
UngrabDevice thaws them. The request has no effect if the specified time is earlier than the last-
device-grab time or is later than the current server time.
This request generates DeviceFocusIn and DeviceFocusOut ev ents.
An UngrabDevice is performed automatically if the event window for an active device grab
becomes not viewable.

2.15. Passively Grabbing A Key
Passive grabs of buttons and keys on extension devices are supported via the GrabDeviceButton
and GrabDeviceKey requests. These passive grabs are released via the UngrabDeviceKey and
UngrabDeviceButton requests.
To passively grab a single key on an extension device, use GrabDeviceKey. That device must
have previously been opened using the OpenDevice request.

16

X Input Extension Protocol Specification X11, Release 6.9/7.0

GrabDeviceKey
device: DEVICE
keycode: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW
owner-events: BOOL
ev ent-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}

Errors: Device, Match, Access, Window, Value

This request is analogous to the core GrabKey request. It establishes a passive grab on a device.
Consequently, In the future:
• IF the device is not grabbed and the specified key, which itself can be a modifier key, is logi-

cally pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

• AND no other modifier keys logically are down,
• AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-

dow is a descendent of the focus window and contains the pointer,
• AND a passive grab on the same device and key combination does not exist on any ancestor

of the grab window,
• THEN the device is actively grabbed, as for GrabDevice, the last-device-grab time is set to

the time at which the key was pressed (as transmitted in the DeviceKeyPress ev ent), and the
DeviceKeyPress ev ent is reported.

The interpretation of the remaining arguments is as for GrabDevice. The active grab is termi-
nated automatically when logical state of the device has the specified key released (independent
of the logical state of the modifier keys).
Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.
A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min-keycode and max-
keycode in the ListInputDevices request. If it is not within that range, GrabDeviceKey gener-
ates a Value error.
NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X
keyboard is used as the modifier_device.
An Access error is generated if some other client has issued a GrabDeviceKey with the same
device and key combination on the same window. When using AnyModifier or AnyKey, the
request fails completely and the X server generates a Access error and no grabs are established if
there is a conflicting grab for any combination.
This request cannot be used to grab a key on the X keyboard device. The core GrabKey request
should be used for that purpose.

17

X Input Extension Protocol Specification X11, Release 6.9/7.0

To release a passive grab of a single key on an extension device, use UngrabDeviceKey.

UngrabDeviceKey
device: DEVICE
keycode: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW

Errors: Device, Match, Window, Value, Alloc

This request is analogous to the core UngrabKey request. It releases the key combination on the
specified window if it was grabbed by this client. A modifier of AnyModifier is equivalent to
issuing the request for all possible modifier combinations (including the combination of no modi-
fiers). A key of AnyKey is equivalent to issuing the request for all possible keycodes. This
request has no effect on an active grab.
NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X
keyboard is used as the modifier_device.

2.16. Passively Grabbing A Button
To establish a passive grab for a single button on an extension device, use GrabDeviceButton.

GrabDeviceButton
device: DEVICE
button: BUTTON or AnyButton
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW
owner-events: BOOL
ev ent-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}

Errors: Device, Match, Window, Access, Value

This request is analogous to the core GrabButton request. It establishes an explicit passive grab
for a button on an extension input device. Since the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine-to parameter. The
device must have previously been opened using the OpenDevice request.
The GrabDeviceButton request establishes a passive grab on a device. Consequently, in the
future,
• IF the device is not grabbed and the specified button is logically pressed when the specified

modifier keys logically are down (and no other buttons or modifier keys are down),
• AND the grab window contains the device,

18

X Input Extension Protocol Specification X11, Release 6.9/7.0

• AND a passive grab on the same device and button/ key combination does not exist on any
ancestor of the grab window,

• THEN the device is actively grabbed, as for GrabDevice, the last-grab time is set to the time
at which the button was pressed (as transmitted in the DeviceButtonPress ev ent), and the
DeviceButtonPress ev ent is reported.

The interpretation of the remaining arguments is as for GrabDevice. The active grab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).
Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.
A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. It is not required that the specified button be assigned to a physical button.
NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X
keyboard is used as the modifier_device.
An Access error is generated if some other client has issued a GrabDeviceButton with the same
device and button combination on the same window. When using AnyModifier or AnyButton,
the request fails completely and the X server generates a Access error and no grabs are estab-
lished if there is a conflicting grab for any combination. The request has no effect on an active
grab.
This request cannot be used to grab a button on the X pointer device. The core GrabButton
request should be used for that purpose.
To release a passive grab of a button on an extension device, use UngrabDeviceButton.

UngrabDeviceButton
device: DEVICE
button: BUTTON or AnyButton
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW

Errors: Device, Match, Window, Value, Alloc

This request is analogous to the core UngrabButton request. It releases the passive button/key
combination on the specified window if it was grabbed by the client. A modifiers of AnyModi-
fier is equivalent to issuing the request for all possible modifier combinations (including the com-
bination of no modifiers). A button of AnyButton is equivalent to issuing the request for all pos-
sible buttons. This request has no effect on an active grab. The device must have previously been
opened using the OpenDevice request otherwise a Device error will be generated.
NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X
keyboard is used as the modifier_device.
This request cannot be used to ungrab a button on the X pointer device. The core UngrabButton
request should be used for that purpose.

19

X Input Extension Protocol Specification X11, Release 6.9/7.0

2.17. Thawing A Device
To allow further events to be processed when a device has been frozen, use AllowDeviceEvents.

AllowDeviceEvents
device: DEVICE
ev ent-mode: {AsyncThisDevice, SyncThisDevice, AsyncOtherDevices, ReplayThisde-
vice, AsyncAll, or SyncAll}
time:TIMESTAMP or CurrentTime

Errors: Device, Value

The AllowDeviceEvents request releases some queued events if the client has caused a device to
freeze. The request has no effect if the specified time is earlier than the last-grab time of the most
recent active grab for the client, or if the specified time is later than the current X server time.
The following describes the processing that occurs depending on what constant you pass to the
ev ent-mode argument:
• If the specified device is frozen by the client, event processing for that device continues as

usual. If the device is frozen multiple times by the client on behalf of multiple separate
grabs, AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the specified device
is not frozen by the client, but the device need not be grabbed by the client.

• If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next button or key event is reported to the client. At this
time, the specified device again appears to freeze. However, if the reported event causes the
grab to be released, the specified device does not freeze. SyncThisDevice has no effect if the
specified device is not frozen by the client or is not grabbed by the client.

• If the specified device is actively grabbed by the client and is frozen as the result of an event
having been sent to the client (either from the activation of a GrabDeviceButton or from a pre-
vious AllowDeviceEvents with mode SyncThisDevice, but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores
any passive grabs at or above (towards the root) the grab-window of the grab just released.
The request has no effect if the specified device is not grabbed by the client or if it is not
frozen as the result of an event.

• If the remaining devices are frozen by the client, event processing for them continues as usual.
If the other devices are frozen multiple times by the client on behalf of multiple separate
grabs, AsyncOtherDevices ‘‘thaws’’ for all. AsyncOtherDevices has no effect if the devices
are not frozen by the client, but those devices need not be grabbed by the client.

• If all devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device (button event
for the grabbed device, key or motion event for the device), at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the
devices do not freeze (but if any device is still grabbed, then a subsequent event for it will still
cause all devices to freeze). SyncAll has no effect unless all devices are frozen by the client.
If any device is frozen twice by the client on behalf of two separate grabs, SyncAll "thaws"
for both (but a subsequent freeze for SyncAll will only freeze each device once).

• If all devices are frozen by the client, event processing (for all devices) continues normally. If
any device is frozen multiple times by the client on behalf of multiple separate grabs, Asyn-
cAll "thaws" for all. AsyncAll has no effect unless all devices are frozen by the client.

20

X Input Extension Protocol Specification X11, Release 6.9/7.0

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the processing of
ev ents from the remaining devices. AsyncOtherDevices has no effect on the processing of events
from the specified device. When the event_mode is SyncAll or AsyncAll, the device parameter is
ignored.
It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

2.18. Controlling Device Focus
The current focus window for an extension input device can be determined using the GetDevice-
Focus request. Extension devices are focused using the SetDeviceFocus request in the same way
that the keyboard is focused using the SetInputFocus request, except that a device is specified as
part of the request. One additional focus state, FollowKeyboard, is provided for extension
devices.
To get the current focus state, revert state, and focus time of an extension device, use GetDevice-
Focus.

GetDeviceFocus
device: DEVICE

=>
focus: WINDOW, PointerRoot, FollowKeyboard, or None
revert-to: Parent, PointerRoot, FollowKeyboard, or None
focus-time: TIMESTAMP

Errors: Device, Match

This request returns the current focus state, revert-to state, and last-focus-time of an extension
device.
To set the focus of an extension device, use SetDeviceFocus.

SetDeviceFocus
device: DEVICE
focus: WINDOW, PointerRoot, FollowKeyboard, or None
revert-to: Parent, PointerRoot, FollowKeyboard, or None
focus-time: TIMESTAMP

Errors: Device, Window, Value, Match

This request changes the focus for an extension input device and the last-focus-change-time. The
request has no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time, with
CurrentTime replaced by the current server time.
The action taken by the server when this request is requested depends on the value of the focus
argument:

21

X Input Extension Protocol Specification X11, Release 6.9/7.0

• If the focus argument is None, all input events from this device will be discarded until a new
focus window is set. In this case, the revert-to argument is ignored.

• If a window ID is assigned to the focus argument, it becomes the focus window of the device.
If an input event from the device would normally be reported to this window or to one of its
inferiors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

• If you assign PointerRoot to the focus argument, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each input event. In this case, the
revert-to argument is ignored.

• If you assign FollowKeyboard to the focus argument, the focus window is dynamically taken
to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time of the request (else a Match error). If
the focus window later becomes not viewable, the X server evaluates the revert-to argument to
determine the new focus window.
• If you assign RevertToParent to the revert-to argument, the focus reverts to the parent (or the

closest viewable ancestor), and the new rev ert-to value is taken to be RevertToNone.
• If you assign RevertToPointerRoot, RevertToFollowKeyboard, or RevertToNone to the

revert-to argument, the focus reverts to that value.
When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut ev ents, but
the last-focus-change time is not affected.
This request causes the X server to generate DeviceFocusIn and DeviceFocusOut ev ents.

2.19. Controlling Device Feedback
To get the settings of feedbacks on an extension device, use GetFeedbackControl. This request
provides functionality equivalent to the core GetKeyboardControl and GetPointerControl
functions. It also provides a way to control displays associated with an input device that are capa-
ble of displaying an integer or string.

GetFeedbackControl
device: DEVICE

=>
num_feedbacks_return: CARD16
return_value: LISTofFEEDBACKSTATE

where

FEEDBACKSTATE: {KbdFeedbackState, PtrFeedbackState, IntegerFeedbackState,
StringFeedbackState, BellFeedbackState, LedFeedbackState}

Feedbacks are reported by class. Those feedbacks that are reported for the core keyboard device
are in class KbdFeedback, and are returned in the KbdFeedbackState structure. The members
of that structure are as follows:

22

X Input Extension Protocol Specification X11, Release 6.9/7.0

CLASS Kbd: [class: CARD8
length: CARD16
feedback id: CARD8
key_click_percent: CARD8
bell_percent: CARD8
bell_pitch: CARD16
bell_duration: CARD16
led_value: BITMASK
global_auto_repeat: {AutoRepeatModeOn, AutoRepeatMode-
Off}
auto_repeats: LISTofCARD8]

Those feedbacks that are equivalent to those reported for the core pointer are in feedback class
PtrFeedback and are reported in the PtrFeedbackState structure. The members of that structure
are:

CLASS Ptr: [class: CARD8
length: CARD16
feedback id: CARD8
accelNumerator: CARD16
accelDenominator: CARD16
threshold: CARD16]

Some input devices provide a means of displaying an integer. Those devices will support feed-
back class IntegerFeedback, which is reported in the IntegerFeedbackState structure. The
members of that structure are:

CLASS Integer: [class: CARD8
length: CARD16
feedback id: CARD8
resolution: CARD32
min-val: INT32
max-val: INT32]

Some input devices provide a means of displaying a string. Those devices will support feedback
class StringFeedback, which is reported in the StringFeedbackState structure. The members of
that structure are:

CLASS String: [class: CARD8
length: CARD16
feedback id: CARD8
max_symbols: CARD16
num_keysyms_supported: CARD16
keysyms_supported: LISTofKEYSYM]

Some input devices contain a bell. Those devices will support feedback class BellFeedback,
which is reported in the BellFeedbackState structure. The members of that structure are:

23

X Input Extension Protocol Specification X11, Release 6.9/7.0

CLASS Bell: [class: CARD8
length: CARD16
feedback id: CARD8
percent: CARD8
pitch: CARD16
duration: CARD16]

The percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if possible.
Setting to −1 restores the default. Other negative values generate a Value error.
The pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to −1 restores the default.
Other negative values generate a Value error.
The duration sets the duration (specified in milliseconds) of the bell, if possible. Setting to −1
restores the default. Other negative values generate a Value error.
A bell generator connected with the console but not directly on the device is treated as if it were
part of the device. Some input devices contain LEDs. Those devices will support feedback class
Led, which is reported in the LedFeedbackState structure. The members of that structure are:

CLASS Led: [class: CARD8
length: CARD16
feedback id: CARD8
led_mask: BITMASK
led_value: BITMASK]

Each bit in led_mask indicates that the corresponding led is supported by the feedback. At most
32 LEDs per feedback are supported. No standard interpretation of LEDs is defined.
This function will fail with a BadMatch error if the device specified in the request does not sup-
port feedbacks.
Errors: Device, Match
To change the settings of a feedback on an extension device, use ChangeFeedbackControl.

ChangeFeedbackControl
device: DEVICE
feedbackid: CARD8
value-mask: BITMASK
value: FEEDBACKCONTROL

Errors: Device, Match, Value

FEEDBACKCONTROL: {KBDFEEDBACKCONTROL, PTRFEEDBACKCONTROL,
INTEGERFEEDBACKCONTROL, STRINGFEEDBACKCON-
TROL, BELLFEEDBACKCONTROL, LEDFEEDBACKCON-
TROL}

Feedback controls are grouped by class. Those feedbacks that are equivalent to those supported
by the core keyboard are controlled by feedback class KbdFeedbackClass using the

24

X Input Extension Protocol Specification X11, Release 6.9/7.0

KbdFeedbackControl structure. The members of that structure are:

KBDFEEDBACKCTL: [class: CARD8
length: CARD16
feedback id: CARD8
key_click_percent: INT8
bell_percent: INT8
bell_pitch: INT16
bell_duration: INT16
led_mask: INT32
led_value: INT32
key: KEYCODE
auto_repeat_mode: {AutoRepeatModeOn,
AutoRepeatModeOff, AutoRepeatModeDefault}]

The key_click_percent sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if
possible. Setting to −1 restores the default. Other negative values generate a Value error.
If both auto_repeat_mode and key are specified, then the auto_repeat_mode of that key is
changed, if possible. If only auto_repeat_mode is specified, then the global auto-repeat mode for
the entire keyboard is changed, if possible, without affecting the per-key settings. It is a Match
error if a key is specified without an auto_repeat_mode.
The order in which controls are verified and altered is server-dependent. If an error is generated,
a subset of the controls may have been altered.
Those feedback controls equivalent to those of the core pointer are controlled by feedback class
PtrFeedbackClass using the PtrFeedbackControl structure. The members of that structure are
as follows:

PTRFEEDBACKCTL: [class: CARD8
length: CARD16
feedback id: CARD8
accelNumerator: INT16
accelDenominator: INT16
threshold: INT16]

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the device moves three times as fast as normal. The fraction may be rounded arbitrar-
ily by the X server. Acceleration only takes effect if the device moves more than threshold pixels
at once and only applies to the amount beyond the value in the threshold argument. Setting a
value to -1 restores the default. The values of the do-accel and do-threshold arguments must be
nonzero for the device values to be set. Otherwise, the parameters will be unchanged. Negative
values generate a Value error, as does a zero value for the accel-denominator argument.
Some devices are capable of displaying an integer. This is done using feedback class Inte-
gerFeedbackClass using the IntegerFeedbackControl structure. The members of that structure
are as follows:

INTEGERCTL: [class: CARD8
length: CARD16
feedback id: CARD8
int_to_display: INT32]

25

X Input Extension Protocol Specification X11, Release 6.9/7.0

Some devices are capable of displaying an string. This is done using feedback class StringFeed-
backClass using the StringFeedbackCtl structure. The members of that structure are as follows:

STRINGCTL: [class: CARD8
length: CARD16
feedback id: CARD8
syms_to_display: LISTofKEYSYMS]

Some devices contain a bell. This is done using feedback class BellFeedbackClass using the
BellFeedbackControl structure. The members of that structure are as follows:

BELLCTL: [class: CARD8
length: CARD16
feedback id: CARD8
percent: INT8
pitch: INT16
duration: INT16]

Some devices contain leds. These can be turned on and off using the LedFeedbackControl
structure. The members of that structure are as follows:

LEDCTL: [class: CARD8
length: CARD16
feedback id: CARD8
led_mask: BITMASK
led_value: BITMASK]

Errors: Device, Match, Value

2.20. Ringing a Bell on an Input Device
To ring a bell on an extension input device, use DeviceBell.

DeviceBell
device: DEVICE
feedbackclass: CARD8
feedbackid: CARD8
percent: INT8

Errors: Device, Value

This request is analogous to the core Bell request. It rings the specified bell on the specified input
device feedback, using the specified volume. The specified volume is relative to the base volume
for the feedback. If the value for the percent argument is not in the range -100 to 100 inclusive, a
Value error results. The volume at which the bell rings when the percent argument is nonnegative
is:

26

X Input Extension Protocol Specification X11, Release 6.9/7.0

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use ChangeFeedbackControl request.

2.21. Controlling Device Encoding
To get the keyboard mapping of an extension device that has keys, use GetDeviceKeyMapping.

GetDeviceKeyMapping
device: DEVICE
first-keycode: KEYCODE
count: CARD8

=>
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Device, Match, Value

This request returns the symbols for the specified number of keycodes for the specified extension
device, starting with the specified keycode. The first-keycode must be greater than or equal to
min-keycode as returned in the connection setup (else a Value error), and

first-keycode + count − 1

must be less than or equal to max-keycode as returned in the connection setup (else a Value
error). The number of elements in the keysyms list is

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero)
of

(K − first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large
enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to fill in
unused elements for individual keycodes.
If the specified device has not first been opened by this client via OpenDevice, or if that device
does not support input class Keys, this request will fail with a Device error.
To change the keyboard mapping of an extension device that has keys, use ChangeDe-
viceKeyMapping.

ChangeDeviceKeyMapping
device: DEVICE
first-keycode: KEYCODE
keysyms-per-keycode: CARD8

27

X Input Extension Protocol Specification X11, Release 6.9/7.0

keysyms: LISTofKEYSYM
num_codes: CARD8

Errors: Device, Match, Value, Alloc

This request is analogous to the core ChangeKeyMapping request. It defines the symbols for the
specified number of keycodes for the specified extension device. If the specified device has not
first been opened by this client via OpenDevice, or if that device does not support input class
Ke ys, this request will fail with a Device error.
The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise, ChangeDeviceKeyMapping generates a Length error. The specified first_keycode must
be greater than or equal to the min_keycode value returned by the ListInputDevices request, or
this request will fail with a Value error. In addition, if the following expression is not less than
the max_keycode value returned by the ListInputDevices request, the request will fail with a
Value error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

To obtain the keycodes that are used as modifiers on an extension device that has keys, use Get-
DeviceModifierMapping.

GetDeviceModifierMapping
device: DEVICE

=>
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

Errors: Device, Match

This request is analogous to the core GetModifierMapping request. This request returns the
keycodes of the keys being used as modifiers. The number of keycodes in the list is 8*keycodes-
per-modifier. The keycodes are divided into eight sets, with each set containing keycodes-per-
modifier elements. The sets are assigned in order to the modifiers Shift, Lock, Control, Mod1,
Mod2, Mod3, Mod4, and Mod5. The keycodes-per-modifier value is chosen arbitrarily by the
server; zeroes are used to fill in unused elements within each set. If only zero values are given in
a set, the use of the corresponding modifier has been disabled. The order of keycodes within each
set is chosen arbitrarily by the server.
To set which keycodes that are to be used as modifiers for an extension device, use SetDevice-
ModifierMapping.

SetDeviceModifierMapping
device: DEVICE
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

=>
status: {Success, Busy, Failed}

28

X Input Extension Protocol Specification X11, Release 6.9/7.0

Errors: Device, Match, Value, Alloc

This request is analogous to the core SetModifierMapping request. This request specifies the
keycodes (if any) of the keys to be used as modifiers. The number of keycodes in the list must be
8*keycodes-per-modifier (else a Length error). The keycodes are divided into eight sets, with the
sets, with each set containing keycodes-per-modifier elements. The sets are assigned in order to
the modifiers Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only non-zero
keycode values are used within each set; zero values are ignored. All of the non-zero keycodes
must be in the range specified by min-keycode and max-keycode in the ListInputDevices request
(else a Value error). The order of keycodes within a set does not matter. If no non-zero values
are specified in a set, the use of the corresponding modifier is disabled, and the modifier bit will
always be zero. Otherwise, the modifier bit will be one whenever at least one of the keys in the
corresponding set is in the down position.
A server can impose restrictions on how modifiers can be changed (for example, if certain keys do
not generate up transitions in hardware or if multiple keys per modifier are not supported). The
status reply is Failed if some such restriction is violated, and none of the modifiers are changed.
If the new non-zero keycodes specified for a modifier differ from those currently defined, and any
(current or new) keys for that modifier are logically in the down state, then the status reply is
Busy, and none of the modifiers are changed.

This request generates a DeviceMappingNotify event on a Success status. The
DeviceMappingNotify ev ent will be sent only to those clients that have expressed an inter-
est in receiving that event via the XSelectExtensionEvent request.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is MappingFailed , and none of the modifiers are
changed. If the new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply is Map-
pingBusy, and none of the modifiers are changed.

2.22. Controlling Button Mapping
These requests are analogous to the core GetPointerMapping and ChangePointerMapping
requests. They allow a client to determine the current mapping of buttons on an extension device,
and to change that mapping.
To get the current button mapping for an extension device, use GetDeviceButtonMapping.

GetDeviceButtonMapping
device: DEVICE
nmap: CARD8

=>
map_return: LISTofCARD8

Errors: Device, Match

The GetDeviceButtonMapping function returns the current mapping of the buttons on the speci-
fied device. Elements of the list are indexed starting from one. The length of the list indicates the
number of physical buttons. The nominal mapping is the identity mapping map[i]=i.

29

X Input Extension Protocol Specification X11, Release 6.9/7.0

nmap indicates the number of elements in the map_return array. Only the first nmap entries will
be copied by the library into the map_return array.

To set the button mapping for an extension device, use SetDeviceButtonMapping.

SetDeviceButtonMapping
device: DEVICE
map: LISTofCARD8
nmap: CARD8

=>
status: CARD8

Errors: Device, Match, Value

The SetDeviceButtonMapping function sets the mapping of the specified device and causes the
X server to generate a DeviceMappingNotify ev ent on a status of MappingSuccess. Elements of
the list are indexed starting from one. The length of the list, specified in nmap, must be the same
as GetDeviceButtonMapping would return. Otherwise, SetDeviceButtonMapping generates a
Value error. A zero element disables a buttons, and elements are not restricted in value by the
number of physical buttons. However, no two elements can have the same nonzero value. Other-
wise, this function generates a Value error. If any of the buttons to be altered are in the down
state, the status reply is MappingBusy and the mapping is not changed.

2.23. Obtaining The State Of A Device
To obtain vectors that describe the state of the keys, buttons and valuators of an extension device,
use QueryDeviceState.

QueryDeviceState
device: DEVICE

=>
device-id: CARD8
data: LISTofINPUTCLASS

where

INPUTCLASS: {VALUAT OR, BUTTON, KEY}

CLASS VALUAT OR: [class: CARD8
num_valuators: CARD8
mode: CARD8

#x01 device mode
(0 = Relative, 1 = Absolute)

#x02 proximity state
(0 = InProximity, 1 = OutOfProximity)

valuators: LISTofINT32]

30

X Input Extension Protocol Specification X11, Release 6.9/7.0

CLASS BUTTON: [class: CARD8
num_buttons: CARD8
buttons: LISTofCARD8]

CLASS KEY: [class: CARD8
num_keys: CARD8
keys: LISTofCARD8]

Errors: Device

The QueryDeviceState request returns the current logical state of the buttons, keys, and valuators
on the specified input device. The buttons and keys arrays, byte N (from 0) contains the bits for
key or button 8N to 8N+7 with the least significant bit in the byte representing key or button 8N.
If the device has valuators, a bit in the mode field indicates whether the device is reporting Abso-
lute or Relative data. If it is reporting Absolute data, the valuators array will contain the current
value of the valuators. If it is reporting Relative data, the valuators array will contain undefined
data.
If the device reports proximity information, a bit in the mode field indicates whether the device is
InProximity or OutOfProximity.

3. Events
The input extension creates input events analogous to the core input events. These extension
input events are generated by manipulating one of the extension input devices.

3.1. Button, Key, and Motion Events
DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress,
DeviceButtonRelease
DeviceMotionNotify

device: CARD8
root, event: WINDOW
child: Window or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated when a key, button, or valuator logically changes state. The genera-
tion of these logical changes may lag the physical changes, if device event processing is frozen.
Note that DeviceKeyPress and DeviceKeyRelease are generated for all keys, even those mapped
to modifier bits. The ‘‘source’’ of the event is the window the pointer is in. The window with
respect to which the event is normally reported is found by looking up the hierarchy (starting with
the source window) for the first window on which any client has selected interest in the event.
The actual window used for reporting can be modified by active grabs and by the focus win-
dow.The window the event is reported with respect to is called the ‘‘event’’ window.

31

X Input Extension Protocol Specification X11, Release 6.9/7.0

The root is the root window of the ‘‘source’’ window, and root-x and root-y are the pointer coor-
dinates relative to root’s origin at the time of the event. Event is the ‘‘event’’ window. If the
ev ent window is on the same screen as root, then event-x and event-y are the pointer coordinates
relative to the event window’s origin. Otherwise, ev ent-x and event-y are zero. If the source win-
dow is an inferior of the event window, then child is set to the child of the event window that is an
ancestor of (or is) the source window. Otherwise, it is set to None. The state component gives the
logical state of the buttons on the core X pointer and modifier keys on the core X keyboard just
before the event. The detail component type varies with the event type:

Event Component
DeviceKeyPress,
DeviceKeyRelease

KEYCODE

DeviceButtonPress,
DeviceButtonRelease

BUTTON

DeviceMotionNotify { Normal , Hint }

The granularity of motion events is not guaranteed, but a client selecting for motion events is
guaranteed to get at least one event when a valuator changes. If DeviceMotionHint is selected,
the server is free to send only one DeviceMotionNotify ev ent (with detail Hint) to the client for
the event window, until either a key or button changes state, the pointer leaves the event window,
or the client issues a QueryDeviceState or GetDeviceMotionEvents request.

3.2. DeviceValuator Event
DeviceValuator

device: CARD8
device_state: SETofKEYBUTMASK
num_valuators: CARD8
first_valuator: CARD8
valuators: LISTofINT32

DeviceValuator events are generated to contain valuator information for which there is insufficient
space in DeviceKey, DeviceButton, DeviceMotion, and Proximity wire events. For events of
these types, a second event of type DeviceValuator follows immediately. The library combines
these events into a single event that a client can receive via XNextEvent. DeviceValuator events
are not selected for by clients, they only exist to contain information that will not fit into some
ev ent selected by clients.
The device_state component gives the state of the buttons and modifiers on the device generating
the event.
Extension motion devices may report motion data for a variable number of axes. The valuators
array contains the values of all axes reported by the device. If more than 6 axes are reported,
more than one DeviceValuator event will be sent by the server, and more than one DeviceKey,
DeviceButton, DeviceMotion, or Proximity event will be reported by the library. Clients should
examine the corresponding fields of the event reported by the library to determine the total num-
ber of axes reported, and the first axis reported in the current event. Axes are numbered begin-
ning with zero.
For Button, Key and Motion events on a device reporting absolute motion data the current value
of the device’s valuators is reported. For devices that report relative data, Button and Key events
may be followed by a DeviceValuator event that contains 0s in the num_valuators field. In this
case, only the device_state component will have meaning.

32

X Input Extension Protocol Specification X11, Release 6.9/7.0

3.3. Device Focus Events
DeviceFocusIn
DeviceFocusOut

device: CARD8
time: TIMESTAMP
ev ent: WINDOW
mode: { Normal, WhileGrabbed, Grab, Ungrab}
detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer, PointerRoot,
None}

These events are generated when the input focus changes and are reported to clients selecting
DeviceFocusChange for the specified device and window. Events generated by SetDeviceFocus
when the device is not grabbed have mode Normal. Events generated by SetDeviceFocus when
the device is grabbed have mode WhileGrabbed. Events generated when a device grab actives
have mode Grab, and events generated when a device grab deactivates have mode Ungrab.
All DeviceFocusOut ev ents caused by a window unmap are generated after any UnmapNotify
ev ent, but the ordering of DeviceFocusOut with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify and Expose ev ents is not constrained.
DeviceFocusIn and DeviceFocusOut ev ents are generated for focus changes of extension devices
in the same manner as focus events for the core devices are generated.

3.4. Device State Notify Event
DeviceStateNotify

time: TIMESTAMP
device: CARD8
num_keys: CARD8
num_buttons: CARD8
num_valuators: CARD8
classes_reported: CARD8 {SetOfDeviceMode | SetOfInputClass}

SetOfDeviceMode:
#x80 ProximityState

0 = InProxmity, 1 = OutOfProximity
#x40 Device Mode

(0 = Relative, 1 = Absolute)
SetOfInputClass:

#x04 reporting valuators
#x02 reporting buttons
#x01 reporting keys

buttons: LISTofCARD8
keys: LISTofCARD8
valuators: LISTofCARD32

This event reports the state of the device just as in the QueryDeviceState request. This ev ent is
reported to clients selecting DeviceStateNotify for the device and window and is generated
immediately after every EnterNotify and DeviceFocusIn. If the device has no more than 32 but-
tons, no more than 32 keys, and no more than 3 valuators, This event can report the state of the
device. If the device has more than 32 buttons, the event will be immediately followed by a
DeviceButtonStateNotify event. If the device has more than 32 keys, the event will be followed
by a DeviceKeyStateNotify event. If the device has more than 3 valuators, the event will be

33

X Input Extension Protocol Specification X11, Release 6.9/7.0

followed by one or more DeviceValuator events.

3.5. Device KeyState and ButtonState Notify Events
DeviceKeyStateNotify

device: CARD8
keys: LISTofCARD8

DeviceButtonStateNotify
device: CARD8
buttons: LISTofCARD8

These events contain information about the state of keys and buttons on a device that will not fit
into the DeviceStateNotify wire event. These ev ents are not selected by clients, rather they may
immediately follow a DeviceStateNotify wire event and be combined with it into a single
DeviceStateNotify client event that a client may receive via XNextEvent.

3.6. DeviceMappingNotify Event
DeviceMappingNotify

time: TIMESTAMP
device: CARD8
request: CARD8
first_keycode: CARD8
count: CARD8

This event reports a change in the mapping of keys, modifiers, or buttons on an extension device.
This event is reported to clients selecting DeviceMappingNotify for the device and window and
is generated after every client SetDeviceButtonMapping, ChangeDeviceKeyMapping, or
ChangeDeviceModifierMapping request.

3.7. ChangeDeviceNotify Event
ChangeDeviceNotify

device: CARD8
time: TIMESTAMP
request: CARD8

This event reports a change in the physical device being used as the core X keyboard or X pointer
device. ChangeDeviceNotify ev ents are reported to clients selecting ChangeDeviceNotify for
the device and window and is generated after every client ChangeKeyboardDevice or Change-
PointerDevice request.

3.8. Proximity Events
ProximityIn
ProximityOut

device: CARD8
root, event: WINDOW
child: Window or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
state: SETofKEYBUTMASK
time: TIMESTAMP

34

X Input Extension Protocol Specification X11, Release 6.9/7.0

device-state: SETofKEYBUTMASK
axis-count: CARD8
first-axis: CARD8
axis-data: LISTofINT32

These events are generated by some devices (such as graphics tablets or touchscreens) to indicate
that a stylus has moved into or out of contact with a positional sensing surface.
The ‘‘source’’ of the event is the window the pointer is in. The window with respect to which the
ev ent is normally reported is found by looking up the hierarchy (starting with the source window)
for the first window on which any client has selected interest in the event. The actual window
used for reporting can be modified by active grabs and by the focus window.The window the
ev ent is reported with respect to is called the ‘‘event’’ window.
The root is the root window of the ‘‘source’’ window, and root-x and root-y are the pointer coor-
dinates relative to root’s origin at the time of the event. Event is the ‘‘event’’ window. If the
ev ent window is on the same screen as root, then event-x and event-y are the pointer coordinates
relative to the event window’s origin. Otherwise, ev ent-x and event-y are zero. If the source win-
dow is an inferior of the event window, then child is set to the child of the event window that is an
ancestor of (or is) the source window. Otherwise, it is set to None. The state component gives the
logical state of the buttons on the core X pointer and modifier keys on the core X keyboard just
before the event. The device-state component gives the state of the buttons and modifiers on the
device generating the event.

35

X Input Extension Protocol Specification X11, Release 6.9/7.0

Appendix A

Input Extension Protocol Encoding

Syntactic Conventions
All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).
The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing
encode-form
...
encode-form

Each encode-form describes a single component.
For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those bytes. For example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of a Window error are
always zero (indicating an error in general) and three (indicating the Window error in particular):

1 0 Error
1 3 code

For components described in the protocol as:

name: {Name1, ..., NameI}

the encode-form is:

N name
value1 Name1
...
valueI NameI

The value is always interpreted as an N-byte unsigned integer. Note that the size of N is sometimes larger than that
strictly required to encode the values. For example:

class: {InputOutput, InputOnly, CopyFromParent}

becomes:

36

X Input Extension Protocol Specification X11, Release 6.9/7.0

2 class
0 CopyFromParent
1 InputOutput
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternative1 ... or AlternativeI

the encode-form is:

N TYPE NAME
value1 Alternative1
...
valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW destination
0 PointerWindow
1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask
mask1 mask-name1
...
maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit in a BITMASK is
reserved for use in defining chained (multiword) bitmasks, as extensions augment existing core requests. The precise
interpretation of this bit is not yet defined here, although a probable mechanism is that a 1-bit indicates that another N
bytes of bitmask follows, with bits within the overall mask still interpreted from least-significant to most-significant
with an N-byte unit, with N-byte units interpreted in stream order, and with the overall mask being byte-swapped in
individual N-byte units.
For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form
...
encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding BITMASK bit.
The encoding of a VALUE always occupies four bytes, but the number of bytes specified in the encoding-form indi-
cates how many of the least-significant bytes are actually used; the remaining bytes are unused and their values do not
matter.
In various cases, the number of bytes occupied by a component will be specified by a lowercase single-letter variable
name instead of a specific numeric value, and often some other component will have its value specified as a simple
numeric expression involving these variables. Components specified with such expressions are always interpreted as
unsigned integers. The scope of such variables is always just the enclosing request, reply, error, event, or compound
type structure. For example:

2 3+n request length
4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do not matter), the encode-form is:

N unused

37

X Input Extension Protocol Specification X11, Release 6.9/7.0

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple of four.

pad(E) = (4 - (E mod 4)) mod 4

Common Types
LISTofFOO

In this document the LISTof notation strictly means some number of repetitions of the FOO encoding; the
actual length of the list is encoded elsewhere.

SETofFOO
A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32
WINDOW: CARD32
BYTE: 8-bit value
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32
EVENTCLASS: CARD32

INPUTCLASS
0 KeyClass
1 ButtonClass
2 ValuatorClass
3 FeedbackClass
4 ProximityClass
5 FocusClass
6 OtherClass

INPUTCLASS
0 KbdFeedbackClass
1 PtrFeedbackClass
2 StringFeedbackClass
3 IntegerFeedbackClass
4 LedFeedbackClass
5 BellFeedbackClass

INPUTINFO
0 KEYINFO
1 BUTTONINFO
2 VALUAT ORINFO

DEVICEMODE
0 Relative
1 Absolute

PROXIMITYSTATE
0 InProximity
1 OutOfProximity

38

X Input Extension Protocol Specification X11, Release 6.9/7.0

BOOL
0 False
1 True

KEYSYM: CARD32
KEYCODE: CARD8
BUTTON: CARD8

SETofKEYBUTMASK
#x0001 Shift
#x0002 Lock
#x0004 Control
#x0008 Mod1
#x0010 Mod2
#x0020 Mod3
#x0040 Mod4
#x0080 Mod5
#x0100 Button1
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Button5
#xe000 unused but must be zero

SETofKEYMASK
encodings are the same as for SETofKEYBUTMASK, except with
#xff00 unused but must be zero

STRING8: LISTofCARD8

STR
1 n length of name in bytes
n STRING8 name

Errors
Request

1 0 Error
1 1 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Value
1 0 Error
1 2 code
2 CARD16 sequence number
4 <32-bits> bad value
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Window
1 0 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

39

X Input Extension Protocol Specification X11, Release 6.9/7.0

Match
1 0 Error
1 8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Access
1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alloc
1 0 Error
1 11 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Name
1 0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Device
1 0 Error
1 CARD8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Event
1 0 Error
1 CARD8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

40

X Input Extension Protocol Specification X11, Release 6.9/7.0

Mode
1 0 Error
1 CARD8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Class
1 0 Error
1 CARD8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Ke yboards
KEYCODE values are always greater than 7 (and less than 256).
KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.
The names and encodings of the standard KEYSYM values are contained in appendix F.
Pointers
BUTTON values are numbered starting with one.
Requests

GetExtensionVersion
1 CARD8 input extension opcode
1 1 GetExtensionVersion opcode
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

=>
1 1 Reply
1 1 GetExtensionVersion opcode
2 CARD16 sequence number
4 0 reply length
2 CARD16 major version
2 CARD16 minor version
1 BOOL present
19 unused

ListInputDevices
1 CARD8 input extension opcode
1 2 ListInputDevices opcode
2 1 request length

=>
1 1 Reply
1 2 ListInputDevices opcode
2 CARD16 sequence number
4 (n+p)/4 reply length
1 CARD8 number of input devices
23 unused
n LISTofDEVICEINFO info for each input device
p unused, p=pad(n)

41

X Input Extension Protocol Specification X11, Release 6.9/7.0

DEVICEINFO
4 CARD32 device type
1 CARD8 device id
1 CARD8 number of input classes this device reports
1 CARD8 device use

0 IsXPointer
1 IsXKeyboard
2 IsXExtensionDevice

1 unused
n LISTofINPUTINFO input info for each input class
m STR name
p unused, p=pad(m)

INPUTINFO KEYINFO or BUTTONINFO or VALUAT ORINFO

KEYINFO
1 0 class id
1 8 length
1 KEYCODE minimum keycode
1 KEYCODE maximum keycode
2 CARD16 number of keys
2 unused

BUTTONINFO
1 1 class id
1 4 length
2 CARD16 number of buttons

VALUAT ORINFO
1 2 class id
1 8+12n length
1 n number of axes
1 SETofDEVICEMODE mode
4 CARD32 size of motion buffer
12n LISTofAXISINFO valuator limits

AXISINFO
4 CARD32 resolution
4 CARD32 minimum value
4 CARD32 maximum value

OpenDevice
1 CARD8 input extension opcode
1 3 OpenDevice opcode
2 2 request length
1 CARD8 device id
3 unused

=>
1 1 Reply
1 3 OpenDevice opcode
2 CARD16 sequence number
4 (n+p)/4 reply length
1 CARD8 number of input classes
23 unused
n LISTofINPUTCLASSINFO input class information
p unused, p=pad(n)

42

X Input Extension Protocol Specification X11, Release 6.9/7.0

INPUTCLASSINFO
1 CARD8 input class id

0 KEY
1 BUTTON
2 VALUAT OR
3 FEEDBACK
4 PROXIMITY
5 FOCUS
6 OTHER

1 CARD8 event type base code for this class

CloseDevice
1 CARD8 input extension opcode
1 4 CloseDevice opcode
2 2 request length
1 CARD8 device id
3 unused

SetDeviceMode
1 CARD8 input extension opcode
1 5 SetDeviceMode opcode
2 2 request length
1 CARD8 device id
1 CARD8 mode
2 unused

=>
1 1 Reply
1 5 SetDeviceMode opcode
2 CARD16 sequence number
4 0 reply length
1 CARD8 status

0 Success
1 AlreadyGrabbed

3 + first_error DeviceBusy
23 unused

SelectExtensionEvent
1 CARD8 input extension opcode
1 6 SelectExtensionEvent opcode
2 3+n request length
4 Window event window
2 CARD16 count
2 unused
4n LISTofEVENTCLASS desired ev ents

GetSelectedExtensionEvents
1 CARD8 input extension opcode
1 7 GetSelectedExtensionEvents opcode
2 2 request length
4 Window event window

43

X Input Extension Protocol Specification X11, Release 6.9/7.0

=>
1 1 Reply
1 7 GetSelecteExtensionEvents opcode
2 CARD16 sequence number
4 n + m reply length
2 n this client count
2 m all clients count
20 unused
4n LISTofEVENTCLASS this client list
4m LISTofEVENTCLASS all clients list

ChangeDeviceDontPropagateList
1 CARD8 input extension opcode
1 8 ChangeDeviceDontPropagateList opcode
2 3+n request length
4 Window event window
2 n count of events
1 mode

0 AddToList
1 DeleteFromList

1 unused
4n LISTofEVENTCLASS desired ev ents

GetDeviceDontPropagateList
1 CARD8 input extension opcode
1 9 GetDeviceDontPropagateList opcode
2 2 request length
4 Window event window

=>
1 1 Reply
1 9 GetDeviceDontPropagateList opcode
2 CARD16 sequence number
4 n reply length
2 n count of events
22 unused
4n LISTofEVENTCLASS don’t propagate list

GetDeviceMotionEvents
1 CARD8 input extension opcode
1 10 GetDeviceMotionEvents opcode
2 4 request length
4 TIMESTAMP start

0 CurrentTime
4 TIMESTAMP stop

0 CurrentTime
1 CARD8 device id
3 unused

=>
1 1 Reply
1 10 GetDeviceMotionEvents opcode
2 CARD16 sequence number
4 (m+1)n reply length
4 n number of DEVICETIMECOORDs in events
1 m number of valuators per event
1 CARD8 mode of the device

0 Absolute
1 Relative

18 unused
(4m+4)n LISTofDEVICETIMECOORD events

44

X Input Extension Protocol Specification X11, Release 6.9/7.0

DEVICETIMECOORD
4 TIMESTAMP time
4m LISTofINT32 valuators

ChangeKeyboardDevice
1 CARD8 input extension opcode
1 11 ChangeKeyboardDevice opcode
2 2 request length
1 CARD8 device id
3 unused

=>
1 1 Reply
1 11 ChangeKeyboardDevice opcode
2 CARD16 sequence number
4 0 reply length
1 status

0 Success
1 AlreadyGrabbed
2 DeviceFrozen

23 unused

ChangePointerDevice
1 CARD8 input extension opcode
1 12 ChangePointerDevice opcode
2 2 request length
1 CARD8 x-axis
1 CARD8 y-axis
1 CARD8 device id
1 unused

=>
1 1 Reply
1 12 ChangePointerDevice opcode
2 CARD16 sequence number
4 0 reply length
1 status

0 Success
1 AlreadyGrabbed
2 DeviceFrozen

23 unused

GrabDevice
1 CARD8 input extension opcode
1 13 GrabDevice opcode
2 5+n request length
4 WINDOW grab-window
4 TIMESTAMP time

0 CurrentTime
2 n count of events
1 this-device-mode

0 Synchronous
1 Asynchronous

1 other-devices-mode
0 Synchronous
1 Asynchronous

1 BOOL owner-events
1 CARD8 device id
2 unused
4n LISTofEVENTCLASS event list

45

X Input Extension Protocol Specification X11, Release 6.9/7.0

=>
1 1 Reply
1 13 GrabDevice opcode
2 CARD16 sequence number
4 0 reply length
1 status

0 Success
1 AlreadyGrabbed
2 Inv alidTime
3 NotViewable
4 Frozen

23 unused

UngrabDevice
1 CARD8 input extension opcode
1 14 UngrabDevice opcode
2 3 request length
4 TIMESTAMP time

0 CurrentTime
1 CARD8 device id
3 unused

GrabDeviceKey
1 CARD8 input extension opcode
1 15 GrabDeviceKey opcode
2 5+n request length
4 WINDOW grab-window
2 n count of events
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 CARD8 modifier device

#x0FF UseXKeyboard
1 CARD8 grabbed device
1 KEYCODE key

0 AnyKe y
1 this-device-mode

0 Synchronous
1 Asynchronous

1 other-devices-mode
0 Synchronous
1 Asynchronous

1 BOOL owner-events
2 unused
4n LISTofEVENTCLASS event list

UngrabDeviceKey
1 CARD8 input extension opcode
1 16 UngrabDeviceKey opcode
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 CARD8 modifier device

#x0FF UseXKeyboard
1 KEYCODE key

0 AnyKe y
1 CARD8 grabbed device
3 unused

46

X Input Extension Protocol Specification X11, Release 6.9/7.0

GrabDeviceButton
1 CARD8 input extension opcode
1 17 GrabDeviceButton opcode
2 5+n request length
4 WINDOW grab-window
1 CARD8 grabbed device
1 CARD8 modifier device

#x0FF UseXKeyboard
2 n count of desired events
2 SETofKEYMASK modifiers
1 this-device-mode

0 Synchronous
1 Asynchronous

1 other-device-mode
0 Synchronous
1 Asynchronous

1 BUTTON button
0 AnyButton

1 BOOL owner-events
#x8000 AnyModifier

2 unused
4n LISTofEVENTCLASS event list

UngrabDeviceButton
1 CARD8 input extension opcode
1 18 UngrabDeviceButton opcode
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 CARD8 modifier device

#x0FF UseXKeyboard
1 BUTTON button

0 AnyButton
1 CARD8 grabbed device
3 unused

AllowDeviceEvents
1 CARD8 input extension opcode
1 19 AllowDeviceEvents opcode
2 3 request length
4 TIMESTAMP time

0 CurrentTime
1 mode

0 AsyncThisDevice
1 SyncThisDevice
2 ReplayThisDevice
3 AsyncOtherDevices
4 AsyncAll
5 SyncAll

1 CARD8 device id
2 unused

GetDeviceFocus
1 CARD8 input extension opcode
1 20 GetDeviceFocus opcode
2 2 request length
1 CARD8 device
3 unused

47

X Input Extension Protocol Specification X11, Release 6.9/7.0

=>
1 1 Reply
1 20 GetDeviceFocus opcode
2 CARD16 sequence number
4 0 reply length
4 WINDOW focus

0 None
1 PointerRoot
3 FollowKeyboard

4 TIMESTAMP focus time
1 rev ert-to

0 None
1 PointerRoot
2 Parent
3 FollowKeyboard

15 unused

SetDeviceFocus
1 CARD8 input extension opcode
1 21 SetDeviceFocus opcode
2 4 request length
4 WINDOW focus

0 None
1 PointerRoot
3 FollowKeyboard

4 TIMESTAMP time
0 CurrentTime

1 rev ert-to
0 None
1 PointerRoot
2 Parent
3 FollowKeyboard

1 CARD8 device
2 unused

GetFeedbackControl
1 CARD8 input extension opcode
1 22 GetFeedbackControl opcode
2 2 request length
1 CARD8 device id
3 unused

=>
1 1 Reply
1 22 GetFeedbackControl opcode
2 CARD16 sequence number
4 m/4 reply length
2 n number of feedbacks supported
22 unused
m LISTofFEEDBACKSTATE feedbacks

FEEDBACKSTATE KBDFEEDBACKSTATE, PTRFEEDBACKSTATE, INTEGERFEEDBACKSTATE,
STRINGFEEDBACKSTATE, BELLFEEDBACKSTATE, or LEDFEEDBACKSTATE

48

X Input Extension Protocol Specification X11, Release 6.9/7.0

KBDFEEDBACKSTATE
1 0 feedback class id
1 CARD8 id of this feedback
2 20 length
2 CARD16 pitch
2 CARD16 duration
4 CARD32 led_mask
4 CARD32 led_values
1 global_auto_repeat

0 Off
1 On

1 CARD8 click
1 CARD8 percent
1 unused
32 LISTofCARD8 auto_repeats

PTRFEEDBACKSTATE
1 0 feedback class id
1 CARD8 id of this feedback
2 12 length
2 unused
2 CARD16 acceleration-numerator
2 CARD16 acceleration-denominator
2 CARD16 threshold

INTEGERFEEDBACKSTATE
1 0 feedback class id
1 CARD8 id of this feedback
2 16 length
4 CARD32 resolution
4 INT32 minimum value
4 INT32 maximum value

STRINGFEEDBACKSTATE
1 1 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 CARD16 max_symbols
2 n number of keysyms supported
4n LISTofKEYSYM key symbols supported

BELLFEEDBACKSTATE
1 1 feedback class id
1 CARD8 id of this feedback
2 12 length
1 CARD8 percent
3 unused
2 CARD16 pitch
2 CARD16 duration

LEDFEEDBACKSTATE
1 1 feedback class id
1 CARD8 id of this feedback
2 12 length
4 CARD32 led_mask
4 BITMASK led_values

#x0001 On
#x0002 Off

49

X Input Extension Protocol Specification X11, Release 6.9/7.0

ChangeFeedbackControl
1 CARD8 input extension opcode
1 23 ChangeFeedbackControl opcode
2 3+n/4 request length
4 BITMASK value-mask (has n bits set to 1)

#x0001 keyclick-percent
#x0002 bell-percent
#x0004 bell-pitch
#x0008 bell-duration
#x0010 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode
#x0001 string
#x0001 integer
#x0001 acceleration-numerator
#x0002 acceleration-denominator
#x0004 acceleration-threshold

1 CARD8 device id
1 CARD8 feedback class id
2 unused
n FEEDBACKCLASS

FEEDBACKCLASS KBDFEEDBACKCTL, PTRFEEDBACKCTL, INTEGERFEEDBACKCTL,
STRINGFEEDBACKCTL, BELLFEEDBACKCTL, or LEDFEEDBACKCTL

KBDFEEDBACKCTL
1 0 feedback class id
1 CARD8 id of this feedback
2 20 length
1 KEYCODE key
1 auto-repeat-mode

0 Off
1 On
2 Default

1 INT8 key-click-percent
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duration
4 CARD32 led_mask
4 CARD32 led_values

PTRFEEDBACKCTL
1 1 feedback class id
1 CARD8 id of this feedback
2 12 length
2 unused
2 INT16 numerator
2 INT16 denominator
2 INT16 threshold

STRINGCTL
1 2 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 unused
2 n number of keysyms to display
4n LISTofKEYSYM list of key symbols to display

50

X Input Extension Protocol Specification X11, Release 6.9/7.0

INTEGERCTL
1 3 feedback class id
1 CARD8 id of this feedback
2 8 length
4 INT32 integer to display

LEDCTL
1 4 feedback class id
1 CARD8 id of this feedback
2 12 length
4 CARD32 led_mask
4 BITMASK led_values

#x0001 On
#x0002 Off

BELLCTL
1 5 feedback class id
1 CARD8 id of this feedback
2 8 length
1 INT8 percent
3 unused
2 INT16 pitch
2 INT16 duration

GetDeviceKeyMapping
1 CARD8 input extension opcode
1 24 GetDeviceKeyMapping opcode
2 2 request length
1 CARD8 device
1 KEYCODE first-keycode
1 CARD8 count
1 unused

=>
1 1 Reply
1 24 GetDeviceKeyMapping opcode
2 CARD16 sequence number
4 nm reply length (m = count field from the request)
1 n keysyms-per-keycode
23 unused
4nm LISTofKEYSYM keysyms

ChangeDeviceKeyMapping
1 CARD8 input extension opcode
1 25 ChangeDeviceKeyMapping opcode
2 2+nm request length
1 CARD8 device
1 KEYCODE first-keycode
1 m keysyms-per-keycode
1 n keycode-count
4nm LISTofKEYSYM keysyms

GetDeviceModifierMapping
1 CARD8 input extension opcode
1 26 GetDeviceModifierMapping opcode
2 2 request length
1 CARD8 device
3 unused

51

X Input Extension Protocol Specification X11, Release 6.9/7.0

=>
1 1 Reply
1 26 GetDeviceModifierMapping opcode
2 CARD16 sequence number
4 2n reply length
1 n keycodes-per-modifier
23 unused
8n LISTofKEYCODE keycodes

SetDeviceModifierMapping
1 CARD8 input extension opcode
1 27 SetDeviceModifier opcode
2 2+2n request length
1 CARD8 device
1 n keycodes-per-modifier
2 unused
8n LISTofKEYCODE keycodes

=>
1 1 Reply
1 27 SetDeviceModifierMapping opcode
2 CARD16 sequence number
4 0 reply length
1 status

0 Success
1 Busy
2 Failed

23 unused

GetDeviceButtonMapping
1 CARD8 input extension opcode
1 28 GetDeviceButtonMapping opcode
2 2 request length
1 CARD8 device
3 unused

=>
1 1 Reply
1 28 GetDeviceButtonMapping opcode
2 CARD16 sequence number
4 (n+p)/4 reply length
1 n number of elements in map list
23 unused
n LISTofCARD8 map
p unused, p=pad(n)

SetDeviceButtonMapping
1 CARD8 input extension opcode
1 29 SetDeviceButtonMapping opcode
2 2+(n+p)/4 request length
1 CARD8 device
1 n length of map
2 unused
n LISTofCARD8 map
p unused, p=pad(n)

52

X Input Extension Protocol Specification X11, Release 6.9/7.0

=>
1 1 Reply
1 29 SetDeviceButtonMapping opcode
2 CARD16 sequence number
4 0 reply length
1 status

0 Success
1 Busy

23 unused

QueryDeviceState
1 CARD8 input extension opcode
1 30 QueryDeviceState opcode
2 2 request length
1 CARD8 device
3 unused

=>
1 1 Reply
1 30 QueryDeviceState opcode
2 CARD16 sequence number
4 m/4 reply length
1 n number of input classes
23 unused
m LISTofINPUTSTATE

INPUTSTATE KEYSTATE or BUTTONSTATE or VALUAT ORSTATE

KEYSTATE
1 CARD8 key input class id
1 36 length
1 CARD8 num_keys
1 unused
32 LISTofCARD8 status of keys

BUTTONSTATE
1 CARD8 button input class id
1 36 length
1 CARD8 num_buttons
1 unused
32 LISTofCARD8 status of buttons

VALUAT ORSTATE
1 CARD8 valuator input class id
1 4n + 4 length
1 n number of valuators
1 mode

#x01 DeviceMode (0 = Relative, 1 = Absolute)
#x02 ProximityState (0 = InProximity, 1 = OutOfProximity)

4n LISTofCARD32 status of valuators

53

X Input Extension Protocol Specification X11, Release 6.9/7.0

SendExtensionEvent
1 CARD8 input extension opcode
1 31 SendExtensionEvent opcode
2 4 + 8n + m request length
4 WINDOW destination
1 CARD8 device
1 BOOL propagate
2 CARD16 eventclass count
1 CARD8 num_events
3 unused
32n LISTofEVENTS events to send
4m LISTofEVENTCLASS desired ev ents

DeviceBell
1 CARD8 input extension opcode
1 32 DeviceBell opcode
2 2 request length
1 CARD8 device id
1 CARD8 feedback id
1 CARD8 feedback class
1 INT8 percent

SetDeviceValuators
1 CARD8 input extension opcode
1 33 SetDeviceValuators opcode
2 2 + n request length
1 CARD8 device id
1 CARD8 first valuator
1 n number of valuators
1 unused
4n LISTofINT32 valuator values to set

=>
1 1 Reply
1 33 SetDeviceValuators opcode
2 CARD16 sequence number
4 0 reply length
1 CARD8 status

0 Success
1 AlreadyGrabbed

23 unused

GetDeviceControl
1 CARD8 input extension opcode
1 34 GetDeviceControl opcode
2 2 request length
2 CARD16 device control type
1 CARD8 device id
1 unused

=>
1 1 Reply
1 34 GetDeviceControl opcode
2 CARD16 sequence number
4 n/4 reply length
1 CARD8 status

0 Success
1 AlreadyGrabbed
3 + first_error DeviceBusy

23 unused
n DEVICESTATE

54

X Input Extension Protocol Specification X11, Release 6.9/7.0

DEVICESTATE DEVICERESOLUTIONSTATE

DEVICERESOLUTIONSTATE
2 0 control type
2 8 + 12n length
4 n num_valuators
4n LISTOfCARD32 resolution values
4n LISTOfCARD32 resolution min_values
4n LISTOfCARD32 resolution max_values

ChangeDeviceControl
1 CARD8 input extension opcode
1 35 ChangeDeviceControl opcode
2 2+n/4 request length
2 CARD16 control type
1 CARD8 device id
1 unused
n DEVICECONTROL

DEVICECONTROL DEVICERESOLUTIONCTL

DEVICERESOLUTIONCTL
2 1 control type
2 8 + 4n length
1 CARD8 first_valuator
1 n num_valuators
2 unused
4n LISTOfCARD32 resolution values

=>
1 1 Reply
1 35 ChangeDeviceControl opcode
2 CARD16 sequence number
4 0 reply length
1 CARD8 status

0 Success
1 AlreadyGrabbed
3 + first_error DeviceBusy

23 unused

Events
DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, ProximityIn, ProximityOut, and
DeviceStateNotify events may be followed by zero or more DeviceValuator events. DeviceMotionNotify events will
be followed by one or more DeviceValuator events.

DeviceValuator
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence number
2 SETofKEYBUTMASK state
1 n number of valuators this device reports
1 m number of first valuator in this event
24 LISTofINT32 valuators

55

X Input Extension Protocol Specification X11, Release 6.9/7.0

DeviceKeyPress
1 CARD8 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

DeviceKeyRelease
1 CARD8 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

DeviceButtonPress
1 CARD8 code
1 BUTTON detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

56

X Input Extension Protocol Specification X11, Release 6.9/7.0

DeviceButtonRelease
1 CARD8 code
1 BUTTON detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

DeviceMotionNotify
1 CARD8 code
1 detail

0 Normal
1 Hint

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

DeviceFocusIn
1 CARD8 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

1 CARD8 device id
18 unused

57

X Input Extension Protocol Specification X11, Release 6.9/7.0

DeviceFocusOut
1 CARD8 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

1 CARD8 device id
18 unused

ProximityIn
1 CARD8 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

ProximityOut
1 CARD8 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 CARD8 device id

#x80 MORE_EVENTS follow

DeviceStateNotify events may be immediately followed by zero or one DeviceKeyStateNotify and/ or zero or more
DeviceValuator events.

58

X Input Extension Protocol Specification X11, Release 6.9/7.0

DeviceStateNotify
1 CARD8 code
1 CARD8 device id

#x80 MORE_EVENTS follow
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 num_keys
1 CARD8 num_buttons
1 CARD8 num_valuators
1 CARD8 valuator mode and input classes reported

#x01 reporting keys
#x02 reporting buttons
#x04 reporting valuators
#x40 device mode (0 = Relative, 1 = Absolute)
#x80 proximity state (0 = InProximity, 1 = OutOfProximity)

4 LISTofCARD8 first 32 keys (if reported)
4 LISTofCARD8 first 32 buttons (if reported)
12 LISTofCARD32 first 3 valuators (if reported)

DeviceKeyStateNotify
1 CARD8 code
1 CARD8 device id

#x80 MORE_EVENTS follow
2 CARD16 sequence number
28 LISTofCARD8 state of keys 33-255

DeviceButtonStateNotify
1 CARD8 code
1 CARD8 device id

#x80 MORE_EVENTS follow
2 CARD16 sequence number
28 LISTofCARD8 state of buttons 33-255

DeviceValuator
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence number
2 SETofKEYBUTMASK state
1 n number of valuators this device reports
1 n number of first valuator in this event
24 LISTofINT32 valuators

DeviceMappingNotify
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence number
1 request

0 MappingModifier
1 MappingKeyboard
2 MappingPointer

1 KEYCODE first-keycode
1 CARD8 count
1 unused
4 TIMESTAMP time
20 unused

59

X Input Extension Protocol Specification X11, Release 6.9/7.0

ChangeDeviceNotify
1 CARD8 code
1 CARD8 id of device specified on change request
2 CARD16 sequence number
4 TIMESTAMP time
1 request

0 NewPointer
1 NewKe yboard

23 unused

60

Table of Contents

1.1. Input Extension Overview . 1
1.2. Design Approach . 1
1.3. Core Input Devices . 1
1.4. Extension Input Devices . 1
1.4.1. Event Classes . 2
1.4.2. Input Classes . 2
2. Requests . 3
2.1. Getting the Extension Version . 3
2.2. Listing Available Devices . 3
2.3. Enabling Devices . 6
2.4. Changing The Mode Of A Device . 7
2.5. Initializing Valuators on an Input Device 7
2.6. Getting Input Device Controls . 8
2.7. Selecting Extension Device Events . 10
2.8. Determining Selected Events . 11
2.9. Controlling Event Propagation . 11
2.10. Sending Extension Events . 12
2.11. Getting Motion History . 12
2.12. Changing The Core Devices . 13
2.13. Event Synchronization And Core Grabs 15
2.14. Extension Active Grabs . 15
2.15. Passively Grabbing A Key . 16
2.16. Passively Grabbing A Button . 18
2.17. Thawing A Device . 20
2.18. Controlling Device Focus . 21
2.19. Controlling Device Feedback . 22
2.20. Ringing a Bell on an Input Device . 26
2.21. Controlling Device Encoding . 27
2.22. Controlling Button Mapping . 29
2.23. Obtaining The State Of A Device . 30
3. Events . 31
3.1. Button, Key, and Motion Events . 31
3.2. DeviceValuator Event . 32
3.3. Device Focus Events . 33
3.4. Device State Notify Event . 33
3.5. Device KeyState and ButtonState Notify Events 34
3.6. DeviceMappingNotify Event . 34
3.7. ChangeDeviceNotify Event . 34
3.8. Proximity Events . 34
Appendix A − Input Extension Protocol Encoding 36

i

