Xlib - C Language X Interface
X Window System Standard

James Gettys, Digital Equipment Corporation
Robert W. Scheifler, Massachusetts Institute of Technology
Chuck Adams
Tektronix, Inc.

Vania Joloboff
Open Software Foundation
Hideki Hiura
Sun Microsystems, Inc.

Bill McMahon
Hewlett-Packard Company
Ron Newman
Massachusetts Institute of Technology
Al Tabayoyon
Tektronix, Inc.

Glenn Widener
Tektronix, Inc.

Shigeru Yamada
Fujitsu OSSI

Xlib - C Language X Interface: X Window System Standard

by James Gettys and Robert W. Scheifler
Chuck Adams

Tektronix, Inc.

Vania Joloboff

Open Software Foundation

Hideki Hiura

Sun Microsystems, Inc.

Bill McMahon

Hewlett-Packard Company

Ron Newman

Massachusetts Institute of Technology
Al Tabayoyon

Tektronix, Inc.

Glenn Widener

Tektronix, Inc.

Shigeru Yamada

Fujitsu OSSI

X Version 11, Release 7
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994, 1996, 2002 The Open Group
Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of Digital and Tetronix not be used in in advertising
or publicity pertaining to distribution of the software without specific, written prior permission. Digital and Tetronix
make no representations about the suitability of the software described herein for any purpose. It is provided "as
is" without express or implied warranty.

TekHVC is a trademark of Tektronix, Inc.

Table of Contents

ACKNOWIEAGMENLES ..iivuniiiiiiiiiiie it e et e et e e et e e et e e et e aaaeeaeaeeeaannns X
RELEASE 1 ittt ettt e e e X
RELEASE 4 ..ottt eeaaas xi
RELEASE 5 .ottt xi
RELEASE B ..o ettt ettt e e xii

1. Introduction to XDcciiiiiiiiiiiiiie e e e e e aaa e 1
Overview of the X Window SySEemccccvveiiiiieiiiiiiiiiinieeiee e eeeen 1
EITTOTS ettt ettt e e e e e e e e e eenans 3
Standard Header FilesSc.cviiiiiiiiiiiiiiie e eea e e e 3
Generic Values and TYPES ..c.uevivieriiiireiiinieiieeeiieeeeeieeetieeetieeetiearrnneesrnnseennns 4
Naming and Argument Conventions within Xlibc......ccooiiiiin... 4
Programming Considerationscccccueeiiiiieriiiiieiiireeiee e e e e eei e eenanes 5
Character Sets and ENcCOAiNgScocvvueiiiiieiiiiiiiiiieieiee e e eeineeeieneesnneenes 5
Formatting Conventionsccoiiviiiiiiiiiiiini et e v e aia e 6

2. Display FUNCLIONS ...iiniiiiii e e e e et e e e e eans 7
Opening the DISPIayccieveeiiiiiiiiiirieeiir e erie e eeie e e e e e aan e eeaanns 7
Obtaining Information about the Display, Image Formats, or Screens........... 9

| D315] o] b= A\ K- Yoa o1 PPN 9
Image Format Functions and MacCrosccecevvveiiniieiieniiiinneiineeniiens 15
Screen Information MacCTOScveiviiiiiiiiiiiiiiii e 17
Generating a NoOperation Protocol Requestccoeevvveviiiiiiiiinieiiineevinnen, 20
Freeing Client-Created Datacccoceeuviiiiiiiiiiiniiiiie e eev e eere e eeiies 20
Closing the DISPIaycccuueeiiiiiiiiiiieieie e e e e e e e e eereeeeaanes 21
Using X Server Connection Close Operationsccceevevveeeivinrinnneeinnnennnnn. 21
Using Xlib with TRIreadscccccoeviiiiiiiiiiiiiiie e e e e eaes 23
Using Internal CONNECEIONSccivviiiiiiiiiiinieiie et eri e eeri e e enieeeaaeeeees 23

3. WINdoW FUNCLIONS ..vuuiiiiiiiiiiiii i eete et s e e e eaae e ena e s eeaneeaannaaes 26
VISUAL TYPES tevuiiiiiiiiiiieiiiee et et e et e e tie e e ete e e et e e eseneeataneeaatnserennsersnnsassnnaaes 26
WiINdow AETIDULES ..ovveiiiiiiiice e e e e e eaaa e 27

Background AttribULeccoveiiiiiiiiiineee e 30
Border AEIIDULEoiiiiiiie e 31
Gravity AEriDULESiiiiii e 31
Backing Store Attributeccoviiiiiiiiiiniiie e 32
Save UNAETr Flag ..ocouuviiiiiiiiiiiiiiiee e e e eeee e eea e e e e e eae e aaaaneees 33
Backing Planes and Backing Pixel Attributescccoovvvveviiiiniiiinnnnnnn, 33
Event Mask and Do Not Propagate Mask Attributesc.cccuvveeenen. 33
Override RedireCt FIagcccuviiiiiiiiiiiiiiiie e eevn e e e e e ean e 33
Colormap ALETIDULE .u.iieeiii e 34
CUrSOr ALETIDULE .ouviiiiiiiii e 34
Creating WINAOWScciiiiiiiiiiiiiie ettt e et e eeri e e eaa e e eeaeeeaaneeeees 34
Destroying WINAOWScciuuniiiiiiiiieeiiiieeeiiee et eeiie e e erie e e et e eeieneaenesennneeaeannns 37
MapPIing WINAOWS ...cvvuniiiiieriiieeiiiie e eeii e e et e e et e e et e eeteseaatnsennneseennesrsnnaees 38
Unmapping WINAOWScouiiiiiieiiiiiieiinieiie et e etieeeri e eetieestieeeenneeesnneesnnnaaes 40
Configuring WINAOWSccvueriiiiieiiiiieiir et s et e e e eaieeeeteeaenneeaanneeannns 40
Changing Window Stacking OTAErccceevvuiriiiiiriiiiiriiiineetiin e e enieeeains 45
Changing Window AttriDULESccvviiiiiiiiiiiie e 47

4. Window Information FUNCLIONSccccvviiiiiiiiiiiiiiiii e 51
Obtaining Window Informationccoeeiiiiiiiiiiiiiiiiin e 51
Translating Screen Coordinatesccceeevveeiiiiiriiiiieeeiirreeireeeie e e eeneeenens 54
Properties and ALOMISccouiiiiiiiiii e 56
Obtaining and Changing Window Propertiescccoevvivieniiiiinreniinneinnnennnn. 59

iii

Xlib - C Language X Interface

1T LYot w0) o SOOI 63
5. Pixmap and Cursor FUNCLIONSccccuiiiiiiiiii e 66
Creating and Freeing PiXmapsccooiieiiiiiiiieiiieeie et e e e e e 66
Creating, Recoloring, and Freeing CUrSOTSc.cccevviiiieeiiieeiieiieeieeeieeannens 67
6. Color Management FUNCEIONSooiviiiiiiiiiii e 71
(070] (o) S} wiath (o H 1§ o 1 SO PPP 72
(0701 o) s} i 11T £ TN 76
RGB Device String Specificationccooooiiiiiiiiiiiiiiii 76
RGB Intensity String Specificationc.ccooeviiiiiiiiiin e, 77
Device-Independent String Specificationsc.ccoeevveiiiiiiiiiiiiniinnnnnn.e. 77
Color Conversion Contexts and Gamut Mappingcccoeeeeeevvieiiieeineeeneennnnn. 78
Creating, Copying, and Destroying Colormapscccccceeevvueeineeiineeeneeinnennnnnns 78
Mapping Color Names t0 Valuesc.cceoiviiiiiiiiiiiiiiicieeeee e e 80
Allocating and Freeing Color Cellscccovuiiiiiiiiiiiieiieeeeee e, 82
Modifying and Querying Colormap Cellscccuoviiiiiiiiiiiiiiiieeieee e 86
Color Conversion ContexXt FUNCLIONScovvviiviiiiiiiiiiiiiiiieei e, 91
Getting and Setting the Color Conversion Context of a Colormap....... 91
Obtaining the Default Color Conversion Contextccccceeevinniinnnnnnnss 92
Color Conversion ConteXt MaCIOScceuuviiiuniiiiiiieiiiieeeiieeeeiieeeeieeeenn. 92
Modifying Attributes of a Color Conversion Contextc.ccceeevnneenns. 93
Creating and Freeing a Color Conversion Contextc.ccceevvnnennnnee. 94
Converting between ColOT SPACEScceuvviiiiiiiiiieiieeie e ea e eaenas 95
Callback FUNCEIONS ..iuuuiiiiiiiiieieie ettt e e e e e 95
Prototype Gamut Compression Procedureccooeeeeevveeinneenneennnnnnnns 96
Supplied Gamut Compression Proceduresccooeeueeeveeinneinneevnnnnnnnns 97
Prototype White Point Adjustment Procedureccccovevineiiinnnnnnnnn. 98
Supplied White Point Adjustment Proceduresccccccoevvvviivniiinnennnnen. 99
Gamut Querying FUNCEIONSc.oiiiiiiiiiiiiiie e 100
Red, Green, and Blue QUETIEScuvuiiininiiiiiiii et enen 101
CIELAD QUETIES euininiiiinitie ettt ettt e e et e e e et enenas 102
CIELUV QUETIES «ouininiiiiiiii ettt eenenes 104
TERHVC QUETIES ceveiininiiiieiie ettt e et e e ae et eneaeanes 106
Color Management EXteNSIONSccccuviiiiiiiiiiiiiiii e 108
(O70) (o) Al o T- Yol 1 T 108
Adding Device-Independent Color SPacescccceeevveevnieinieieneiineennnnns 109
Querying Color Space Format and Prefixcc.ccoeiviiiiiiiiiniiniinnn.. 109
Creating Additional Color SPacCescccevueiviiiiiiiiiieeiieeieeee e e e, 109
Parse String Callbackccooviiiiiiiiiiiiii e 110
Color Specification Conversion Callbackccoevvviiiiiiiiiiiiiiinnnnns, 111
FUnNCtion Sets ..o e 112
Adding FUunction Setsceiieiiiiiiiiiiie e 112
Creating Additional Function Setscccccoviiiiiiiiiiiiiiiieeeeeeee, 113
7. Graphics Context FUNCLIONSccovuiiiiiiiiiiiece e eaes 115
Manipulating Graphics Context/Stateccccoeviiiiiiiiiiiiiieiie e, 115
Using Graphics Context Convenience Routinesccccceeeeiiiiiiieinnennnnnnn. 124
Setting the Foreground, Background, Function, or Plane Mask 125
Setting the Line Attributes and Dashescccoeviiiiiiiiiiiiiiiiieiieeens 126
Setting the Fill Style and Fill Rulec.ccoiiiiiiiiiiiiiieeeeee e 127
Setting the Fill Tile and Stipplecooeveiiiiiiiiiieee e 128
Setting the Current FOntc.coooiiiiiiiiiii e 130
Setting the CLpP ReGION ...ccovniiiiiiiiiie e 130
Setting the Arc Mode, Subwindow Mode, and Graphics Exposure.... 132
8. Graphics FUNCLIONSccuiiiiiiiiiie e et e e e e e aanas 134
(O 1=Y- N ok o o N oY= T SRR 134

iv

Xlib - C Language X Interface

(0F0] 03721 a Lo AN =Y 1 TN 135
Drawing Points, Lines, Rectangles, and Arcscc.ccoevvveiiiiiiiniineiieeinenn, 137
Drawing Single and Multiple Pointsccocoviiiiiiiiiiiiiiieeeeeeen 138
Drawing Single and Multiple LiN€sc.cccoeviiiiiiiiiiiieeeeeice e, 139
Drawing Single and Multiple Rectanglesccccoeeviiiiiiiiiiiiiniinennnnnn. 140
Drawing Single and Multiple ATCScccoevviiiiiiiiieiiieeeeee e, 141
FillING ATEAS ovuiiiniiiiiiiii ettt e e et et et e e te et e et e et e e aae s e asenesanaeanns 143
Filling Single and Multiple Rectanglesccccooviiiiiiiiiiiiiiieiineins 143
Filling a Single POLygoncocouiiiiiiiiieieieeece e ea 144
Filling Single and Multiple ATCSc.oevieiiiieiiieiiie e eeve e e 145
FONE MEETICS euniiiiiiiiie ittt et e e et e et e eaaes 146
Loading and Freeing FONtScccoiviiiiiiiiiieeeeeee e 150
Obtaining and Freeing Font Names and Information 152
Computing Character String SizZesccoiveiiiiiiiieiiiiiiieeceeee e, 153
Computing Logical EXEentscccovviiiiiiiiiiiiiiie e 154
Querying Character String SiZesccoiiiiiiiiiiiiiiiiieeeeee e, 155
Drawing TeXE .ouuiiniiiiiiiiiiir e e e e e eans 157
Drawing Complex TeXtcc.iiiiiiiiiiiii e e e 157
Drawing Text Characterscccoeviiviiiiiiiriiie e e e 159
Drawing Image Text Charactersc.ccoeeviiieiiiiiiiiiiieiceeee e, 159
Transferring Images between Client and Serverccooeveviviiiiiiiineennnns 161
9. Window and Session Manager FUunctionscccccoeiieiiiiiiiiiiiie e, 166
Changing the Parent of @ WIndowcccouoiiiiiiiiiiiiiieeee e 166
Controlling the Lifetime of @ Windowccoovviiiiiiiiiiiiiiieeeee e, 167
Managing Installed CoOlOTmapSoeevuieiiiiiineiiieeiieeeieeeieeeie e e e eaeeaeeeenaas 168
Setting and Retrieving the Font Search Pathc.ccoooiiiiiiinn, 169
Grabbing the SEIVET ... e e 170
Killing CHENES ouuiieiiiiiiiee e e e et e et e e ae e e e et e et e eaeeeenaees 171
Controlling the SCTeeN SAVETcciiiiiiiiiiiiieiieee e e 171
Controlling HOSE ACCESS ...uiivniiiiiiieiie et e e e e et e e e e e eens 173
Adding, Getting, or Removing HOStScccivviiiiiiiiiiiiieeeeeeceee, 174
Changing, Enabling, or Disabling Access Controlc..cceeeunennnes 176

L0, EVEIES ittt et ettt et et e et e ea e e e e e era s 178
7Y o I 01T PN 178
Event SITUCTUTESiiiiiiiii ettt e e e 179
EVENET MASKS ..ottt aaas 180
Event Processing OVEIVIEWc..iiiiiiiiiiiiiiiiiieii et et eae e e e e eanaens 182
Keyboard and Pointer EVENtScooviiiiiiiiiiiieii e e 184
Pointer Button EVENtScoouiiiiiiiiiiiiii e 184
Keyboard and Pointer EVEntsccccceeiiiiiiiiiiiiiiiiicieee e 185
Window Entry/EXit EVENLScoiviiiiiiiiiiiiieciiec et e e 189
Normal Entry/EXit EVENLS ...ccuoiiiiiiiiiiieieceeeee e ea 190
Grab and Ungrab Entry/Exit Eventsccccooeiiiiiiiiiiiiniineeeee, 191
INPUEL FOCUS EVENES ..ovniiiiiiiiiiii et et e e 192
Normal Focus Events and Focus Events While Grabbed 193
Focus Events Generated by Grabscccoeiiiiiiiiiiiiiiiniie e, 196

Key Map State Notification EvVentsccoevviiiiiiiiiiiiiiieie e, 196
EXPOSUTE EVEINES ..ouniiiiiiiie ettt e e e e eans 197
EXPOSE EVENLS ouiiiiiiiii e 197
GraphicsExpose and NoExpose Eventsc..cooevveeiiiiiiiiiiiiiieeieeennns 198
Window State Change EVentsccoouiiiiiiiiiiiiiiie e 199
CirculateNotify EVENtScovviiiiiiiiii e 200
ConfigureNotify EVENESccuoiiiiiiiiiiiiei e 200
CreateNoOtify EVENtScoovniiiiiiii e 202

Xlib - C Language X Interface

DestroyNotify EVENES ...ccvuiiiiiiiiee et eas 202
GravityNotify EVENtScocviiiiiiii e 203
MapNOtify EVENES ..ouoiiniiiiiii e 204
MappingNotify EVENESccvuiiiiiii e 204
ReparentNotify EVENtScovviiiiiiiiii e 205
UnmapNotify EVENES ...ovvniiiiiie e 206
VisibilityNotify EVENtSoiiiiiiiiii e 206
Structure Control EVENtsccooouiiiiiiiiiiiiii e 207
CirculateRequest EVENLScccuiiiiiiiiiiiiieiii et eaas 208
ConfigureRequest EVENtSccoviiiiiiiiiiii e 208
MapRequest EVENES ...c.oiuiiiiiiiiiii e 209
ResizeRequest EVENtS ...o..oiuiiiiiiiiii e 210
Colormap State Change EVENtSccoooiiiiiiiiiiiiieiiece e 210
Client Communication EVENtSccoviiiiiiiiiiiriiiiiiiiiieeei et 211
ClientMessage EVENSoiiviiiiiiiiiiie e 211
PropertyNotify EVENESccovniiiiiiieii e 212
SelectionClear EVENTScoouviiiiiiiiiiieiiie et 213
SelectionRequest EVENEScccuiiiiiiiiiiiciiceee et 213
SelectionNOtify EVENTS ..ccuiiviiiiiiiei e 214

11. Event Handling FUNCEIONSccuiiiniiiiiieie et 216
Selecting EVENES ...couniiiiiiii e e 216
Handling the Output Buffercoooiiiiiii e 217
Event Queue Managementcoouviuiiiiiiiiiiiiieiie e e e 218
Manipulating the Event QUEUEcccouniiiniiiiiiiiii e 218
Returning the Next EVentccccoeiiiiiiiiiiii e 218
Selecting Events Using a Predicate Procedurec.cccoevviiinnnnnnnns 219
Selecting Events Using a Window or Event Maskc.coceevniennnee. 221
Putting an Event Back into the QUeUEcoeiviiiiiiiiiiii e 223
Sending Events to Other Applicationscccooueviiiiiiiiiiiiiee e, 223
Getting Pointer Motion HiSTOTYc.viviiiiiiiiiiiiiie e 224
Handling ProtoCol ETTOTSc..oiiuiiiiiiiiieiieeiiee et e e e e et e e aan s 225
Enabling or Disabling Synchronizationc.ccooevviiiiiiiiiiiiiiiieennnnss 225
Using the Default Error Handlerscccoooeiiiiiiiiiiiiiiiieeeeeeie e, 226

12. Input Device FUNCLIONSivuiiiiiiiiiiii et e e 231
Pointer Grabbingcoooiiiiiiiii e 231
Keyboard Grabbingcccoeiiiiiiiiiiiie et e e aenas 236
Resuming Event ProCesSingcccceiviiiiiiiiiiiiiiin e 239
Moving the POINEETco.oiiiiiii e e e eaa s 242
Controlling INPUL FOCUS ...cvuiiiiiiiiiiieie e eaa s 243
Manipulating the Keyboard and Pointer Settingscccceeviiiiiiiiiininnn.s 244
Manipulating the Keyboard Encodingccceeeviiiiiiiiiiiiiiiiiiiieeeeeieeeins 249
13. Locales and Internationalized Text FUNCtionscccceeevuiiiiiinniiiinneennnnenn. 255
X Locale Managementccoueiieiiiiiiieeie e e e e et e et e e st e et e eaneeaenas 256
Locale and Modifier Dependenciescccceueiiiiiiieiiieiiieeiieeieeeee e e 257
Variable Argument LiStSccioiiiiiiiiiiii e 259
OUtPUL MELROAS ...eeiiiieie e e 260
Output Method OVEIVIEWcivuiiiiiiiiieiiieeiie et e e e e e e e eeens 260
Output Method FUnctionscccoeviiiiiiiiiii e 261

X Output Method Valuescccueiiiiiiiiiiieiie e 262
Output Context FUNCLIONSovviiiiiiiiiie e 264
Output Context ValUescooviiiiiiiiiiiieiceece e 266
Creating and Freeing a Font Setccooiviiiiiiiiiiii e, 269
Obtaining Font Set MetriCSccoviiiiiiiiiiiiiie e 273
Drawing Text Using Font Setscccooiiiiiiiiiiiiiiiiie e 278

vi

Xlib - C Language X Interface

INPUL MELNOAS ..ouniiiiiii e et e et e e e e e et e e e e s e aann s 280
Input Method OVETVIEWcovniiiiiiiiiiie et e e 281
Input Method Managementccoeeveiiiiiiiieiiieiie e 289
Input Method FUNCLIONS ...c.uivvniiiiiieiee e 291
Input Method ValUesccouiiiiiiiiiiicie e e 293
Input Context FUNCLIONSc.oiviiiiiiiiiiiee e e 297
Input Context ValUEscoivniiiiiiiiii e 300
Input Method Callback SemantiCscceevviiiiiiiiiiiiiii e 311
Event Filteringccoiiiiiiiiiieie e e e e 320
Getting Keyboard INPULccooiiiiiiiiii e 321
Input Method Conventionsccccceeiiiiiiiiiiiieie e e e 323

SEring CONSTANTS .ovniiniiiiii et e et e e e e e e e e aans 323

14. Inter-Client Communication FUnNctionscccceeeviiiiiiiiiiiiiniiiiinieiiin e, 325

Client to Window Manager Communicationcc.ccoeeveiiiiiiiiieineiinennnnne. 327
Manipulating Top-Level Windowsccevviiiiiiiiieiiieeiieeeeeveevee e 327
Converting String LiSES ...covieiiiiiiiiii e 328
Setting and Reading Text Propertiesccccccovviiiiiiiiiieiiiniiieeeeee, 332
Setting and Reading the WM _NAME Propertycc.cccevveeiueriiinnnennnnn. 333
Setting and Reading the WM _ICON NAME Propertycccccccvuuvennen. 335
Setting and Reading the WM _HINTS Propertycccoeeeevuviiiineeninnnens 336
Setting and Reading the WM _NORMAL HINTS Property 338
Setting and Reading the WM CLASS Propertycccoeevevevieeineeennnnenn. 341
Setting and Reading the WM _TRANSIENT FOR Property 343
Setting and Reading the WM PROTOCOLS Propertycccoeeeevvunnees 343
Setting and Reading the WM _COLORMAP WINDOWS Property 344
Setting and Reading the WM _ICON _SIZE Propertycccoeeevvunreennn.. 345
Using Window Manager Convenience Functionsc.ccoceeueennnes 346

Client to Session Manager Communicationcc.ccceeevieiieiiiieiiieeiineennnenn. 349
Setting and Reading the WM _COMMAND Propertyccoeeveevnnnnenn. 349
Setting and Reading the WM _CLIENT MACHINE Property 350

1=V le =N oo B OTe] (o] a1 0¥) o 1S 350
Standard Colormap Properties and Atomsc.ccceevviiiieeiieiinnennnnnn. 353
Setting and Obtaining Standard Colormapsc.ccoeeeveeeviieinneeenennnnne. 354

15. Resource Manager FUNCLIONScoouviiiiiiiiiiiiiiiiiiece e eaaas 357

Resource File SYNtaxXcocoeiiiiiiiiiiiiicie e e e 358

Resource Manager Matching Rulesccooviiiiiiiiiiiiiniiec e 359

(01§ =% < R 360

Creating and Storing Databasesccccoeiiiiiiiiiiiieiiie e 362

Merging Resource Databasescoccviiiiiiiiiiiiiiiii e 365

LoOKING UP RESOUICEScvuniiiiiiiieiiieeiee et et et e e e e e et e e e e s e eaans 366

Storing into a Resource Databaseccoceiiiiiiiiiiiiiiiiii e 368

Enumerating Database ENtriesccccooiiiiiiiiiiiiiiiii e 370

Parsing Command Line OPtionsccoeviiiiiiiiiiiiiiiiiece et eei e 371

16. Application Utility FUNCLIONSceuiiiniiiiieiie e 374

Using Keyboard Utility FUNCLIONScccvvniiiiiiieiiie e 374
KeySym Classification MacCroscccevveiiiiiiiiiiiieciieeee e 376

Using Latin-1 Keyboard Event FUnctionscccccceveiiiiiiiiiiiiniie e 377

Allocating Permanent SEtOTageccc.oevieiiiiiiiiiiiie e 378

Parsing the Window GeOmMEetIYc.coivviiiiiiiiiie e 378

Manipulating ReGIONS ...c.uoivuiiiiiiiiee e 380
Creating, Copying, or Destroying Regionsccccoceeviviiiiiiiiiniinnennnnn. 380
Moving or Shrinking Regionsccccevoiiiiiiiiiiiiiieee e 381
Computing with Regionsccccviiiiiiiiiiiiiii e 381
Determining if Regions Are Empty or Equalccccoveviiieiiiiniinnnnn. 382

vii

Xlib - C Language X Interface

Locating a Point or a Rectangle in a Regionccceeveiiiiiniiininnnnnss 383

Using Cut BUTTETSiiiiiiiii e e ea e 383
Determining the Appropriate Visual TYPe ..ccccvvivviiiiiiiiiiieiieeeeeee e 385
Manipulating IMageSceeviiiiiiiiiie e e e ae e e 386
Manipulating Bitmapscoeeuiiiiiiiie e 389
Using the ContexXt Managerc.c..oeiiiiieiieeieeeieeeeeee e e e e e ea e e e eeens 392

A. Xlib Functions and Protocol REqQUESLEScccuoeiiiiiiiiiiiiiiiiieieee e, 394
B. X FONE CUTSOTS ..eiiiiiiiiiiiiii ettt ettt et et et e e e e e e eeneeenees 408
C. EXEEIISIONS ouniiiiiiiiiiiieiie ettt et ettt e e et e et et e et e et e e e e eaeeaaeees 409
D. Compatibility FUNCEIONScivniiiiiiiiiieee e e e e e e e 429
X Version 11 Compatibility FUnctionsccccoeeviiieiiiiiiiiiiieeceeeeeeeeen, 429
Setting Standard Propertiesccccccovviiiiiieiiiiiiiece e 429

Setting and Getting Window Sizing Hintsc..cccooiiiiiiiiniiiennnns 430

Getting and Setting an XStandardColormap Structure 432

Parsing Window GEOMELTYcevvueiiiiiiiiiiiieeiieeie e e e e e e eae e 433

Getting the X Environment Defaultsccoooviiiiiiiiiiiininn, 434

X Version 10 Compatibility FUNCtionsccccceeviivieiiiiiiiiiieeceeeeieeeen 434
Drawing and Filling Polygons and CUTIVESc.ccceevveiiniiinieiinciineennnns 434
Associating User Data with a Valuecccooooeiiiiiiiiiiine 437

[1011 oy 439
300 [c): PSPPSRSO 452

viii

List of Tables

A.1. Protocol requests made by each Xlib functioncccoeviviiiiiiiiniiiinninnnn,
A.2. Xlib functions which use each Protocol Requestccccoeevvvneiiiiiiiiinnnnnnn.

ix

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work
of three individuals: Robert Scheifler of the MIT Laboratory for Computer Science
and Jim Gettys of Digital Equipment Corporation and Ron Newman of MIT, both at
MIT Project Athena. X version 11, however, is the result of the efforts of dozens of
individuals at almost as many locations and organizations. At the risk of offending
some of the players by exclusion, we would like to acknowledge some of the people
who deserve special credit and recognition for their work on Xlib. Our apologies to
anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substan-
tially to the design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all
together for us during the early releases. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm good
cheer was a foundation on which we could build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was " loaned'" to Project
Athena at exactly the right moment to provide very capable and much-needed as-
sistance during the alpha and beta releases. He was responsible for the successful
integration of sources from multiple sites; we would not have had a release without
him.

Our thanks also goes to Al Mento and Al Wojtas of Digital's ULTRIX Documentation
Group. With good humor and cheer, they took a rough draft and made it an infinitely
better and more useful document. The work they have done will help many every-
where. We also would like to thank Hal Murray (Digital SRC) and Peter George (Dig-
ital VMS) who contributed much by proofreading the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield,
and Vince Orgovan (Digital VMS) who helped with the library utilities implementa-
tion; to Hania Gajewska (Digital UEG-WSL) who, along with Ellis Cohen (CMU and
Siemens), was instrumental in the semantic design of the window manager proper-
ties; and to Dave Rosenthal (Sun Microsystems) who also contributed to the proto-
col and provided the sample generic color frame buffer device-dependent code.

The alpha and beta test participants deserve special recognition and thanks as well.
It is significant that the bug reports (and many fixes) during alpha and beta test
came almost exclusively from just a few of the alpha testers, mostly hardware ven-
dors working on product implementations of X. The continued public contribution
of vendors and universities is certainly to the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research
at Digital, who has remained committed to the widest public availability of X and
who made it possible to greatly supplement MIT's resources with the Digital staff
in order to make version 11 a reality. Many of the people mentioned here are part
of the Western Software Laboratory (Digital UEG-WSL) of the ULTRIX Engineering
group and work for Smokey Wallace, who has been vital to the project's success.

Acknowledgments

Others not mentioned here worked on the toolkit and are acknowledged in the X
Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University
and now of Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid,
formerly of Stanford University and now of Digital WRL, who had much to do with
W's design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for pro-
viding the environment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the
new Xlib functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this doc-
ument and Jim Fulton and Donna Converse (MIT X Consortium) for their much-ap-
preciated efforts in reviewing the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Soft-
ware Foundation) and Bill McMahon (Hewlett-Packard). The principal author of the
rest of the internationalization facilities is Glenn Widener (Tektronix). Our thanks
to them for keeping their sense of humor through a long and sometimes difficult
design process. Although the words and much of the design are due to them, many
others have contributed substantially to the design and implementation. Tom Mc-
Farland (HP) and Frank Rojas (IBM) deserve particular recognition for their contri-
butions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF),
Gabe Beged-Dov (HP), Chih-Chung Ko (III), Vera Cheng (III), Michael Collins (Dig-
ital), Walt Daniels (IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hi-
toshoi Fukumoto (Nihon Sun), Tim Greenwood (Digital), John Harvey (IBM), Hideki
Hiura (Sun), Fred Horman (AT&T), Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM),
Yutaka Kataoka (Waseda University), Ranee Khubchandani (Sun), Akira Kon (NEC),
Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka (Sun), Seiji Kuwari (OMRON),
Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato Morisaki (NTT), Nelson
Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM), Akira Ohsone
(Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth (AT&T),
Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Sei-
ji Kuwari (OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for pro-
ducing one of the first complete sample implementation of the internationalization
facilities, and Hiromu Inukai (Nihon Sun), Takashi Fujiwara (Fujitsu), Hideki Hiu-
ra (Sun), Yasuhiro Kawai (Oki Technosystems Laboratory), Kazunori Nishihara (Fu-
ji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba), Makoto Wakamatsu
(Sony Corporation) for producing the another complete sample implementation of
the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management
facilities are Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Tay-

xi

Acknowledgments

lor (Tektronix), Bob Toole (Tektronix), and Keith Packard (MIT X Consortium) also
contributed significantly to the design. Others who contributed are: Harold Boll
(Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna Converse (MIT X Consor-
tium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe), Ricardo Motta
(HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consortium),
Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and refor-
matting text for this manual, and for producing man pages. Thanks also to Clive
Feather (IXI) for proof-reading and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun)
and Greg Olsen (Sun) contributed substantially by testing the facilities and report-
ing bugs in a timely fashion.

The principal authors of the internationalization facilities, including Input and Out-
put Methods, are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Al-
though the words and much of the design are due to them, many others have con-
tributed substantially to the design and implementation. They are: Takashi Fuji-
wara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon
SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFarland (HP), Hi-
royuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM), Hidetoshi
Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization
facilities are: Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki
Hiura (SunSoft), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Ni-
hon SunSoft), Song JaeKyung (KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Dig-
ital), Hiroyuki Miyamoto (Digital), Hidetoshi Tajima (HP), Toshimitsu Terazono (Fu-
jitsu), Makoto Wakamatsu (Sony), Masaki Wakao (IBM), Shigeru Yamada (Fujitsu
0OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of
the internationalization facilities are Nobuyuki Tanaka (Sony) and Makoto Waka-
matsu (Sony).

Others who have contributed to the architectural design or testing of the sam-
ple implementation of the internationalization facilities are: Hector Chan (Digital),
Michael Kung (IBM), Joseph Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng
(SunSoft), Frank Rojas (IBM), Yoshiyuki Segawa (Fujitsu OSSI), Makiko Shimamura
(Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI), Masaki Takeuchi (Sony), Jinsoo
Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

xii

Chapter 1. Introduction to Xlib

The X Window System is a network-transparent window system that was designed
at MIT. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output requests
from various client programs located either on the same machine or elsewhere in
the network. Xlib is a C subroutine library that application programs (clients) use
to interface with the window system by means of a stream connection. Although a
client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language
interface to the X Window System protocol. It is neither a tutorial nor a user’s guide
to programming the X Window System. Rather, it provides a detailed description
of each function in the library as well as a discussion of the related background
information. XIlib — C Language X Interface assumes a basic understanding of a
graphics window system and of the C programming language. Other higher-level
abstractions (for example, those provided by the toolkits for X) are built on top
of the Xlib library. For further information about these higher-level libraries, see
the appropriate toolkit documentation. The X Window System Protocol provides the
definitive word on the behavior of X. Although additional information appears here,
the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
* Overview of the X Window System

* Errors

* Standard header files

* Generic values and types

* Naming and argument conventions within Xlib

* Programming considerations

* Character sets and encodings

* Formatting conventions

Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are
common to other window systems have different meanings in X. You may find it
helpful to refer to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping win-
dows or subwindows. A screen is a physical monitor and hardware that can be
color, grayscale, or monochrome. There can be multiple screens for each display
or workstation. A single X server can provide display services for any number of
screens. A set of screens for a single user with one keyboard and one pointer (usu-
ally a mouse) is called a display.

Introduction to Xlib

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root
window is partially or completely covered by child windows. All windows, except for
root windows, have parents. There is usually at least one window for each applica-
tion program. Child windows may in turn have their own children. In this way, an
application program can create an arbitrarily deep tree on each screen. X provides
graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window
can extend beyond the boundaries of the parent, but all output to a window is clipped
by its parent. If several children of a window have overlapping locations, one of the
children is considered to be on top of or raised over the others, thus obscuring them.
Output to areas covered by other windows is suppressed by the window system
unless the window has backing store. If a window is obscured by a second window,
the second window obscures only those ancestors of the second window that are
also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern
(pixmap) or solid color you like. A window usually but not always has a background
pattern, which will be repainted by the window system when uncovered. Child win-
dows obscure their parents, and graphic operations in the parent window usually
are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has
the X axis horizontal and the Y axis vertical with the origin [0, 0] at the upper-left
corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
For a window, the origin is inside the border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a
window is hidden and then brought back onto the screen, its contents may be lost.
The server then sends the client program an Expose event to notify it that part or
all of the window needs to be repainted. Programs must be prepared to regenerate
the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single
plane (depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used
in most graphics functions interchangeably with windows and are used in various
graphics operations to define patterns or tiles. Windows and pixmaps together are
referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests
later execute asynchronously on the X server. Functions that return values of infor-
mation stored in the server do not return (that is, they block) until an explicit reply
is received or an error occurs. You can provide an error handler, which will be called
when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the
request with a call to XSync, which blocks until all previously buffered asynchronous
events have been sent and acted on. As an important side effect, the output buffer in
Xlib is always flushed by a call to any function that returns a value from the server
or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to
refer to objects stored on the X server. These can be of type Window, Font, Pixmap,
Colormap, Cursor, and GContext, as defined in the file <X11/ X. h>. These resources

Introduction to Xlib

are created by requests and are destroyed (or freed) by requests or when connec-
tions are closed. Most of these resources are potentially sharable between appli-
cations, and in fact, windows are manipulated explicitly by window manager pro-
grams. Fonts and cursors are shared automatically across multiple screens. Fonts
are loaded and unloaded as needed and are shared by multiple clients. Fonts are
often cached in the server. Xlib provides no support for sharing graphics contexts
between applications.

Client programs are informed of events. Events may either be side effects of a
request (for example, restacking windows generates Expose events) or complete-
ly asynchronous (for example, from the keyboard). A client program asks to be in-
formed of events. Because other applications can send events to your application,
programs must be prepared to handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronous-
ly from the server and are queued until they are requested by an explicit call (for
example, XNext Event or XW ndowEvent). In addition, some library functions (for ex-
ample, XRai seW ndow) generate Expose and ConfigureRequest events. These events
also arrive asynchronously, but the client may wish to explicitly wait for them by
calling XSync after calling a function that can cause the server to generate events.

Errors

Some functions return Status, an integer error indication. If the function fails, it
returns a zero. If the function returns a status of zero, it has not updated the return
arguments. Because C does not provide multiple return values, many functions
must return their results by writing into client-passed storage. By default, errors are
handled either by a standard library function or by one that you provide. Functions
that return pointers to strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than
one error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is,
it buffers them), errors can be reported much later than they actually occur. For
debugging purposes, however, Xlib provides a mechanism for forcing synchronous
behavior (see section 11.8.1). When synchronization is enabled, errors are reported
as they are generated.

When Xlib detects an error, it calls an error handler, which your program can pro-
vide. If you do not provide an error handler, the error is printed, and your program
terminates.

Standard Header Files

The following include files are part of the Xlib standard:
<X11/ Xl'i b. h>

<X11/ X. h>

<X11/ Xcns. h>

<X11/ Xutil . h>

<X11/ Xr esour ce. h>

<X11/ Xat om h>

<X11/cursorfont. h>

Introduction to Xlib

<X11/ keysym h>

<X11/ Xli bi nt. h>

<X11/ Xpr ot 0. h>

<X11/ Xprotostr. h>

<X11/ X10. h>

Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the type Bool and the Boolean values True and False.
None is the universal null resource ID or atom.
The type XID is used for generic resource IDs.

The type XPointer is defined to be char* and is used as a generic opaque pointer
to data.

Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions.
Given that you remember what information the function requires, these conventions
are intended to make the syntax of the functions more predictable.

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

All X1ib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores ().

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list im-
mediately after the display argument.

When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

Source arguments always precede4he destination arguments in the argument list.

The x argument always precedes the y argument in the argument list.

Introduction to Xlib

¢ The width argument always precedes the height argument in the argument list.

* Where the x, y, width, and height arguments are used together, the x and y argu-
ments always precede the width and height arguments.

* Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

Programming Considerations

The major programming considerations are:

* Coordinates and sizes in X are actually 16-bit quantities. This decision was made
to minimize the bandwidth required for a given level of performance. Coordinates
usually are declared as an int in the interface. Values larger than 16 bits are
truncated silently. Sizes (width and height) are declared as unsigned quantities.

» Keyboards are the greatest variable between different manufacturers' worksta-
tions. If you want your program to be portable, you should be particularly conser-
vative here.

* Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

* The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control
of the entire screen. What you do inside of your top-level window, however, is up
to your application. For further information, see chapter 14 and the Inter-Client
Communication Conventions Manual.

Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character
encodings. The following are the most common:

X Portable Character Set A basic set of 97 characters, which are assumed to
exist in all locales supported by Xlib. This set contains
the following characters:

a..zA..Z 0.9 "#$%&'()*+,-./:;<=>?@[\]"_"{|}~ <space>, <tab>

This set is the left/lower half of the graphic character
set of ISO8859-1 plus space, tab, and newline. It is
also the set of graphic characters in 7-bit ASCII plus
the same three control characters. The actual encod-
ing of these characters on the host is system depen-

dent.
Host Portable Character The encoding of the X Portable Character Set on the
Encoding host. The encoding itself is not defined by this stan-

dard, but the encoding must be the same in all locales
supported by Xlib on the host. If a string is said to be
in the Host Portable Character Encoding, then it on-

Introduction to Xlib

Latin-1

Latin Portable Character
Encoding

STRING Encoding

POSIX Portable Filename
Character Set

ly contains characters from the X Portable Character
Set, in the host encoding.

The coded character set defined by the ISO8859-1
standard.

The encoding of the X Portable Character Set using
the Latin-1 codepoints plus ASCII control characters.
If a string is said to be in the Latin Portable Character
Encoding, then it only contains characters from the
X Portable Character Set, not all of Latin-1.

Latin-1, plus tab and newline.

The set of 65 characters, which can be used in nam-
ing files on a POSIX-compliant host, that are correct-
ly processed in all locales. The set is:

a.zA..Z0.9. -

Formatting Conventions

Xlib — C Language X Interface uses the following conventions:

* Global symbols are printed in t hi s speci al font. These can be either function

names, symbols defined in include files, or structure names. When declared and
defined, function arguments are printed in italics. In the explanatory text that
follows, they usually are printed in regular type.

Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specifi-
cally explained. Although ANSI C function prototype syntax is not used, Xlib head-
er files normally declare functions using function prototypes in ANSI C environ-
ments. General discussion of the function, if any is required, follows the argu-
ments. Where applicable, the last paragraph of the explanation lists the possible
Xlib error codes that the function can generate. For a complete discussion of the
Xlib error codes, see section 11.8.2.

To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

* Any pointer to a structure that is used to return a value is designated as such by
the return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the in out suffix.

Chapter 2. Display Functions

Before your program can use a display, you must establish a connection to the X
server. Once you have established a connection, you then can use the Xlib macros
and functions discussed in this chapter to return information about the display. This
chapter discusses how to:

* Open (connect to) the display

Obtain information about the display, image formats, or screens

Generate a NoQper at i on protocol request

Free client-created data

Close (disconnect from) a display

Use X Server connection close operations

Use Xlib with threads

Use internal connections

Opening the Display

To open a connection to the X server that controls a display, use XQpenDi spl ay.

AllPlanes()
XAllPlanes

display name Specifies the hardware display name, which de-
termines the display and communications domain
to be used. On a POSIX-conformant system, if the
display name is NULL, it defaults to the value of the
DISPLAY environment variable.

The encoding and interpretation of the display name are implementation-depen-
dent. Strings in the Host Portable Character Encoding are supported; support for
other characters is implementation-dependent. On POSIX-conformant systems, the
display name or DISPLAY environment variable can be a string in the format:

pr ot ocol / host nane: nunber . scr een_nunber

protocol Specifies a protocol family or an alias for a protocol
family. Supported protocol families are implementa-
tion dependent. The protocol entry is optional. If pro-
tocol is not specified, the / separating protocol and
hostname must also not be specified.

Display Functions

hostname Specifies the name of the host machine on which the
display is physically attached. You follow the host-
name with either a single colon (:) or a double colon

(:2).

number Specifies the number of the display server on that
host machine. You may optionally follow this display
number with a period (.). A single CPU can have more
than one display. Multiple displays are usually num-
bered starting with zero.

screen_number Specifies the screen to be used on that server. Mul-
tiple screens can be controlled by a single X serv-
er. The screen_ number sets an internal variable that
can be accessed by using the Def aul t Scr een macro
or the XDef aul t Scr een function if you are using lan-
guages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named
““dual-headed":

dual - headed: 0. 1

The XOpenDi spl ay function returns a Display structure that serves as the connec-
tion to the X server and that contains all the information about that X server.
XOpenDi spl ay connects your application to the X server through TCP or DECnet
communications protocols, or through some local inter-process communication pro-
tocol. If the protocol is specified as "tcp", "inet", or "inet6", or if no protocol is
specified and the hostname is a host machine name and a single colon (:) separates
the hostname and display number, XOpenDi spl ay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified
as "inet6", TCP over IPv6 is used. Otherwise, the implementation determines which
IP version is used.) If the hostname and protocol are both not specified, Xlib uses
whatever it believes is the fastest transport. If the hostname is a host machine name
and a double colon (::) separates the hostname and display number, XOpenDi spl ay
connects using DECnet. A single X server can support any or all of these transport
mechanisms simultaneously. A particular Xlib implementation can support many
more of these transport mechanisms.

If successful, XOpenDi spl ay returns a pointer to a Display structure, which is de-
fined in <X11/ Xl i b. h>. If XOpenDi spl ay does not succeed, it returns NULL. After
a successful call to XOpenDi spl ay, all of the screens in the display can be used by
the client. The screen number specified in the display name argument is returned
by the Def aul t Scr een macro (or the XDef aul t Scr een function). You can access ele-
ments of the Display and Screen structures only by using the information macros or
functions. For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section
9.8).

Display Functions

Obtaining Information about the Display, Image
Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions
that return data from the Display structure. The macros are used for C program-
ming, and their corresponding function equivalents are for other language bindings.
This section discusses the:

* Display macros
* Image format functions and macros
* Screen information macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure. The XDi spl ay-
W dt h, XDi spl ayHei ght, XDi spl ayCel | s, XDi spl ayPl anes, XDi spl ayW dt hMM and
XDi spl ayHei ght MM functions in the next sections are misnamed. These functions
really should be named Screenwhatever and XScreenwhatever, not Displaywhatev-
er or XDisplaywhatever. Our apologies for the resulting confusion.

Display Macros

Applications should not directly modify any part of the Display and Screen struc-
tures. The members should be considered read-only, although they may change as
the result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data both can return.

AllPlanes()
XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to
a procedure.

Both Bl ackPi xel and Wi t ePi xel can be used in implementing a monochrome ap-
plication. These pixel values are for permanently allocated entries in the default col-
ormap. The actual RGB (red, green, and blue) values are settable on some screens
and, in any case, may not actually be black or white. The names are intended to
convey the expected relative intensity of the colors.

BlackPixel(display, screen_number)

unsi gned | ong XBl ackPi xel (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the black pixel value for the specified screen.

Display Functions

WhitePixel(display, screen_number)

unsi gned | ong XWhitePixel (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return the white pixel value for the specified screen.

ConnectionNumber(display)
i nt XConnecti onNumber (*di spl ay) ;
display Specifies the connection to the X server.
Both return a connection number for the specified display. On a POSIX-conformant
system, this is the file descriptor of the connection.
DefaultColormap(display, screen_number)

Col ormap XDef aul t Col ormap(*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the default colormap ID for allocation on the specified screen. Most
routine allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number)

i nt XDef aul t Dept h(*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the depth (number of planes) of the default root window for the spec-
ified screen. Other depths may also be supported on this screen (see XMat chVi su-
al I nf o).

To determine the number of depths that are available on a given screen, use XLi st -
Dept hs.

DefaultGC(display, screen_number)

CGC XDefaul t &C(*di splay, screen_nunber, *count_return);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

10

Display Functions

count return Returns the number of (Cn.

The XLi st Dept hs function returns the array of depths that are available on the spec-
ified screen. If the specified screen number is valid and sufficient memory for the
array can be allocated, XLi st Dept hs sets count return to the number of available
depths. Otherwise, it does not set count return and returns NULL. To release the
memory allocated for the array of depths, use XFr ee.

DefaultGC(display, screen_number)

GC XDefaul t GC(*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the default graphics context for the root window of the specified
screen. This GC is created for the convenience of simple applications and contains
the default GC components with the foreground and background pixel values ini-
tialized to the black and white pixels for the screen, respectively. You can modify
its contents freely because it is not used in any Xlib function. This GC should never
be freed.

DefaultRootWindow(display)
W ndow XDef aul t Root W ndow(*di spl ay) ;
display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay(display)
Screen *XDef aul t ScreenOf Di spl ay(*di spl ay) ;
display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay(display, screen_number)

Screen *XScreenO Di spl ay(*display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return a pointer to the indicated screen.

DefaultScreen(display)

i nt XDefaultScreen(*display);

11

Display Functions

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDi spl ay function.
This macro or function should be used to retrieve the screen number in applications
that will use only a single screen.

DefaultVisual(display, screen_number)

Vi sual *XDefaul tVisual (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(*display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

i nt XDi spl ayPl anes(*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the depth of the root window of the specified screen. For an explanation
of depth, see the glossary.

DisplayString(display)
char *XDi splayString(*display);
display Specifies the connection to the X server.

Both return the string that was passed to XOpenDi spl ay when the current display
was opened. On POSIX-conformant systems, if the passed string was NULL, these
return the value of the DISPLAY environment variable when the current display was
opened. These are useful to applications that invoke the f or k system call and want
to open a new connection to the same display from the child process as well as for
printing error messages.

12

Display Functions

LastKnownRequestProcessed(display)
unsi gned | ong XLast KnownRequest Processed(*di spl ay);
display Specifies the connection to the X server.

The XExt endedMaxRequest Si ze function returns zero if the specified display
does not support an extended-length protocol encoding; otherwise, it returns the
maximum request size (in 4-byte units) supported by the server using the ex-
tended-length encoding. The Xlib functions XDr awLi nes, XDr awAr cs, XFil | Pol y-
gon, XChangeProperty, XSet d i pRect angl es, and XSet Regi on will use the extend-
ed-length encoding as necessary, if supported by the server. Use of the extend-
ed-length encoding in other Xlib functions (for example, XDr awPoi nt s, XDr awRec-
t angl es, XDrawSegnments, XFi |l | Arcs, XFi || Rect angl es, XPut | mage) is permitted
but not required; an Xlib implementation may choose to split the data across mul-
tiple smaller requests instead.

LastKnownRequestProcessed(display)
unsi gned | ong XLast KnownRequest Processed(*di spl ay);

display Specifies the connection to the X server.

The XMaxRequest Si ze function returns the maximum request size (in 4-byte units)
supported by the server without using an extended-length protocol encoding. Sin-
gle protocol requests to the server can be no larger than this size unless an ex-
tended-length protocol encoding is supported by the server. The protocol guaran-
tees the size to be no smaller than 4096 units (16384 bytes). Xlib automatically
breaks data up into multiple protocol requests as necessary for the following func-
tions: XDr awPoi nt' s, XDr awRect angl es, XDr awSegnent s, XFi | | Arcs, XFi | | Rect an-
gl es, and XPut | mage.

LastKnownRequestProcessed(display)

unsi gned | ong XLast KnownRequest Processed(*di spl ay);

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been
processed by the X server. Xlib automatically sets this number when replies, events,
and errors are received.

NextRequest(display)
unsi gned | ong XNext Request (*di spl ay);
display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.
ProtocolVersion(display)

i nt XProtocol Version(*di spl ay);

13

Display Functions

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the
connected display.
ProtocolRevision(display)
i nt XProtocol Revi sion(*di spl ay);
display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLength(display)
i nt XQ.engt h(*displ ay);
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEvent sQueued).
RootWindow(display, screen_number)

W ndow XRoot W ndow(*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return the root window. These are useful with functions that need a drawable
of a particular screen and for creating top-level windows.
ScreenCount(display)
i nt XScreenCount (*di spl ay);
display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor(display)
char *XServerVendor (*displ ay);
display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification
of the owner of the X server implementation. If the data returned by the server is
in the Latin Portable Character Encoding, then the string is in the Host Portable
Character Encoding. Otherwise, the contents of the string are implementation-de-
pendent.

14

Display Functions

VendorRelease(display)
i nt XVendor Rel ease(*di spl ay);
display Specifies the connection to the X server.

Both return a number related to a vendor's release of the X server.

Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the
data is provided by Xlib (see sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format
information that is returned at the time of a connection setup. It contains:

t ypedef struct {
i nt depth;
int bits_per_pixel;
i nt scanline_pad;
} XPi xnapFor mat Val ues;

To obtain the pixmap format information for a given display, use XLi st Pi xmapFor -
mat s.

ImageByteOrder(display)

i nt Xl mageByteOrder(*display, *count_return);

display Specifies the connection to the X server.
count return Returns the number of (Cn.

The XLi st Pi xmapFor mat s function returns an array of XPixmapFormatValues struc-
tures that describe the types of Z format images supported by the specified display.
If insufficient memory is available, XLi st Pi xmapFor mat s returns NULL. To free the
allocated storage for the XPixmapFormatValues structures, use XFr ee.

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both return for the speci-
fied server and screen. These are often used by toolkits as well as by simple appli-
cations.

ImageByteOrder(display)
i nt Xl mageByteOrder (*di spl ay);

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

15

Display Functions

BitmapUnit(display)
int XBi tmapUnit(*display);
display Specifies the connection to the X server.

Both return the size of a bitmap's scanline unit in bits. The scanline is calculated

in multiples of this value.

BitmapBitOrder(display)

i nt XBi tmapBit Order(*display);

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least significant or most significant bit in the unit. This macro or function
can return LSBFirst or MSBFirst.

BitmapPad(display)
i nt XBi t mapPad(*di spl ay);
display Specifies the connection to the X server.
Each scanline must be padded to a multiple of bits returned by this macro or
function.
DisplayHeight(display, screen_number)

i nt XDi spl ayHei ght (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number)

i nt XDi spl ayHei ght MM *di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen number)

int XDi splayWdth(*display, screen_nunber);

16

Display Functions

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number)

int XDi spl ayWdthMM *display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the width of the specified screen in millimeters.

Screen Information Macros

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both can return. These
macros or functions all take a pointer to the appropriate screen structure.
BlackPixelOfScreen(screen)

unsi gned | ong XBl ackPi xel Of Screen(*screen);

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen(screen)
unsi gned | ong XWhitePi xel Of Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)
int XCell sOF Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the number of colormap cells in the default colormap of the specified
screen.
DefaultColormapOfScreen(screen)

Col or map XDef aul t Col or mapCOF Screen(*screen);

17

Display Functions

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen(screen)
i nt XDef aul t Dept hOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen(screen)
GC XDef aul t GCOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the
same depth as the root window of the screen. The GC must never be freed.
DefaultVisualOfScreen(screen)

Vi sual *XDef aul t Vi sual Of Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual

types, see section 3.1.

DoesBackingStore(screen)

i nt XDoesBacki ngSt ore(*screen);

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The
value returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).
DoesSaveUnders(screen)

Bool XDoesSaveUnders(*screen);
screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders.
If True, the screen supports save unders. If False, the screen does not support save
unders (see section 3.2.5).

DisplayOfScreen(screen)

Di spl ay *XDi spl ayCf Screen(*screen);

18

Display Functions

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

EventMaskOfScreen(screen)
| ong XEvent MaskOf Screen(*screen);
screen Specifies the appropriate Screen structure.
The XScr eenNunber O Scr een function returns the screen index number of the spec-
ified screen.
EventMaskOfScreen(screen)
| ong XEvent MaskOF Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the event mask of the root window for the specified screen at connec-
tion setup time.
WidthOfScreen(screen)
i nt XWdt hOF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen(screen)
i nt XHei ght Of Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen(screen)
i nt XW dt hMMOF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen)
i nt XHei ght MM Screen(*screen);

screen Specifies the appropriate Screen structure.

19

Display Functions

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)
i nt XMaxCmapsOf Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the maximum number of installed colormaps supported by the speci-
fied screen (see section 9.3).
MinCmapsOfScreen(screen)
i nt XM nCmapsOf Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the minimum number of installed colormaps supported by the specified
screen (see section 9.3).
PlanesOfScreen(screen)
i nt XPl anesOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen(screen)
W ndow XRoot W ndowCF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

Generating a NoOperation Protocol Request

To execute a NoOper at i on protocol request, use XNoQp.
XNoOp(*di spl ay) ;
display Specifies the connection to the X server.

The XNoOp function sends a NoOper at i on protocol request to the X server, thereby
exercising the connection.

Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use XFr ee.

XFree(*data);

20

Display Functions

data Specifies the data that is to be freed.

The XFr ee function is a general-purpose Xlib routine that frees the specified data.
You must use it to free any objects that were allocated by Xlib, unless an alternate
function is explicitly specified for the object. A NULL pointer cannot be passed to
this function.

Closing the Display

To close a display or disconnect from the X server, use X oseDi spl ay.

XCl oseDi spl ay(*displ ay);
display Specifies the connection to the X server.

The XC oseDi spl ay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client
has created on this display, unless the close-down mode of the resource has been
changed (see XSet 0 oseDownMbde). Therefore, these windows, resource IDs, and
other resources should never be referenced again or an error will be generated.
Before exiting, you should call XO oseDi spl ay explicitly so that any pending errors
are reported as XC oseDi spl ay performs a final XSync operation.

XCl oseDi spl ay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after
the client's connection is closed. To change a client's close-down mode, use XSet -
Cl oseDownMbde.

XSet G oseDownhMode(*di splay, close_node);
display Specifies the connection to the X server.

close_ mode Specifies the client close-down mode. You can pass De-
stroyAll, RetainPermanent, or RetainTemporary.

The XSet O oseDownMbde defines what will happen to the client's resources at con-
nection close. A connection starts in DestroyAll mode. For information on what hap-
pens to the client's resources when the close mode argument is RetainPermanent
or RetainTemporary, see section 2.6.

XSet 0 oseDownMbde can generate a BadValue error.

Using X Server Connection Close Operations

When the X server's connection to a client is closed either by an explicit call to
XA oseDi spl ay or by a process that exits, the X server performs the following au-
tomatic operations:

It disowns all selections owned by the client (see XSet Sel ect i onOaner).

* It performs an XUngr abPoi nt er and XUngr abKeyboar d if the client has actively
grabbed the pointer or the keyboard.

21

Display Functions

It performs an XUngr abSer ver if the client has grabbed the server.
It releases all passive grabs made by the client.

It marks all resources (including colormap entries) allocated by the client either
as permanent or temporary, depending on whether the close-down mode is Re-
tainPermanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see XSet O oseDownhbde).

When the close-down mode is DestroyAll, the X server destroys all of a client's re-
sources as follows:

It examines each window in the client's save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients' windows that are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set win-
dow is not an inferior of a window created by the client. The reparenting leaves
unchanged the absolute coordinates (with respect to the root window) of the up-
per-left outer corner of the save-set window.

It performs a MapW ndowrequest on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior
of a window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource created
by the client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X
server goes through a cycle of having no connections and having some connections.
When the last connection to the X server closes as a result of a connection closing
with the close mode of DestroyAll, the X server does the following:

It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on all root windows (see section 4.3).

It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

It restores the standard root tiles and cursors.
It restores the default font path.

It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down
mode set to RetainPermanent or RetainTemporary.

22

Display Functions

Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads
to use Xlib concurrently.

To initialize support for concurrent threads, use Xl ni t Thr eads.
Status XInitThreads();

The Xl ni t Thr eads function initializes Xlib support for concurrent threads. This
function must be the first Xlib function a multi-threaded program calls, and it must
complete before any other Xlib call is made. This function returns a nonzero status
if initialization was successful; otherwise, it returns zero. On systems that do not
support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concur-
rently. If all calls to Xlib functions are protected by some other access mechanism
(for example, a mutual exclusion lock in a toolkit or through explicit client pro-
gramming), Xlib thread initialization is not required. It is recommended that sin-
gle-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDi spl ay.
XLockDi spl ay(*di spl ay);
display Specifies the connection to the X server.

The XLockDi spl ay function locks out all other threads from using the specified dis-
play. Other threads attempting to use the display will block until the display is un-
locked by this thread. Nested calls to XLockDi spl ay work correctly; the display will
not actually be unlocked until XUnl ockDi spl ay has been called the same number
of times as XLockDi spl ay. This function has no effect unless Xlib was successfully
initialized for threads using Xl ni t Thr eads.

To unlock a display, use XUnl ockDi spl ay.
XUnl ockDi spl ay(*di spl ay);
display Specifies the connection to the X server.

The XUnl ockDi spl ay function allows other threads to use the specified display
again. Any threads that have blocked on the display are allowed to continue. Nest-
ed locking works correctly; if XLockDi spl ay has been called multiple times by a
thread, then XUnl ockDi spl ay must be called an equal number of times before the
display is actually unlocked. This function has no effect unless Xlib was successfully
initialized for threads using Xl ni t Thr eads.

Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require
connections to other kinds of servers (for example, to input method servers as de-
scribed in chapter 13). Toolkits and clients that use multiple displays, or that use
displays in combination with other inputs, need to obtain these additional connec-
tions to correctly block until input is available and need to process that input when

23

Display Functions

it is available. Simple clients that use a single display and block for input in an Xlib
event function do not need to use these facilities.

To track internal connections for a display, use XAddConnect i onWat ch.

type void XConnecti onWatchProc(*display, client_data, fd, opening,
*wat ch_dat a) ;

St at us XAddConnecti onWat ch(*di splay, procedure, client_data);

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client data Specifies the additional client data.

The XAddConnect i onWat ch function registers a procedure to be called each time
Xlib opens or closes an internal connection for the specified display. The procedure
is passed the display, the specified client data, the file descriptor for the connec-
tion, a Boolean indicating whether the connection is being opened or closed, and a
pointer to a location for private watch data. If opening is True, the procedure can
store a pointer to private data in the location pointed to by watch data; when the
procedure is later called for this same connection and opening is False, the location
pointed to by watch data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connec-
tions already exist, the registered procedure will immediately be called for each
of them, before XAddConnecti onWat ch returns. XAddConnecti onWat ch returns a
nonzero status if the procedure is successfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure di-
rectly or indirectly causes the state of internal connections or watch procedures to
change, the result is not defined. If Xlib has been initialized for threads, the proce-
dure is called with the display locked and the result of a call by the procedure to
any Xlib function that locks the display is not defined unless the executing thread
has externally locked the display using XLockDi spl ay.

To stop tracking internal connections for a display, use XRenmoveConnect i onWat ch.

0

St at us XRenoveConnecti onWat ch(*display, procedure, client_data);

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client data Specifies the additional client data.

The XRenpveConnect i onWat ch function removes a previously registered connection
watch procedure. The client data must match the client data used when the proce-
dure was initially registered.

To process input on an internal connection, use XPr ocessl nt er nal Connect i on.

0

voi d XProcessl nternal Connection(*display, fd);

24

Display Functions

display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessl nt er nal Connect i on function processes input available on an inter-
nal connection. This function should be called for an internal connection only after
an operating system facility (for example, sel ect or pol |) has indicated that input
is available; otherwise, the effect is not defined.

To obtain all of the current internal connections for a display, use Xl nt er nal Con-
necti onNunbers.

0

Stat us Xl nternal Connecti onNunbers(*di splay, fd, count_return);

display Specifies the connection to the X server.
fd return Returns the file descriptors.
count_return Returns the number of (Cn.

The Xl nt er nal Connect i onNunber s function returns a list of the file descriptors for
all internal connections currently open for the specified display. When the allocated
list is no longer needed, free it by using XFr ee. This functions returns a nonzero
status if the list is successfully allocated; otherwise, it returns zero.

25

Chapter 3. Window Functions
Visual Types

On some display hardware, it may be possible to deal with color resources in more
than one way. For example, you may be able to deal with a screen of either 12-bit
depth with arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8
bits of the pixel dedicated to each of red, green, and blue. These different ways of
dealing with the visual aspects of the screen are called visuals. For each screen of
the display, there may be a list of valid visual types supported at different depths of
the screen. Because default windows and visual types are defined for each screen,
most simple applications need not deal with this complexity. Xlib provides macros
and functions that return the default root window, the default depth of the default
root window, and the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possi-
ble color mapping. The visual utility functions (see section 16.7) use an XVisu-
allnfo structure to return this information to an application. The members of this
structure pertinent to this discussion are class, red mask, green mask, blue mask,
bits per rgb, and colormap size. The class member specifies one of the possible vi-
sual classes of the screen and can be StaticGray, StaticColor, TrueColor, GrayS-
cale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer.
The screen can be color or grayscale, can have a colormap that is writable or read-
only, and can also have a colormap whose indices are decomposed into separate
RGB pieces, provided one is not on a grayscale screen. This leads to the following
diagram:

Col or Gray- Scal e
R O R'W RO RW
Undeconposed Static Pseudo Static Gay
Col or map Col or Col or G ay Scal e
Decomnposed True Direct
Col or map Col or Col or

Conceptually, as each pixel is read out of video memory for display on the screen,
it goes through a look-up stage by indexing into a colormap. Colormaps can be
manipulated arbitrarily on some hardware, in limited ways on other hardware, and
not at all on other hardware. The visual types affect the colormap and the RGB
values in the following ways:

* For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

* GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps.

26

Window Functions

* For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

* TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server dependent but
provide linear or near-linear ramps in each primary.

» StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

¢ StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with
a two-entry colormap can be thought of as monochrome.

The red mask, green mask, and blue mask members are only defined for Direct-
Color and TrueColor. Each has one contiguous set of bits with no intersections. The
bits per rgb member specifies the log base 2 of the number of distinct color values
(individually) of red, green, and blue. Actual RGB values are unsigned 16-bit num-
bers. The colormap size member defines the number of available colormap entries
in a newly created colormap. For DirectColor and TrueColor, this is the size of an
individual pixel subfield.

To obtain the visual ID from a Visual, use XVi sual | DFr onVi sual .
Vi sual I D XVi sual | DFr onVi sual (vi sual) ;
visual Specifies the visual type.

The XVi sual | DFr onVi sual function returns the visual ID for the specified visual
type.

Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events
from children), and a property list (see section 4.3). The window border and back-
ground can be a solid color or a pattern, called a tile. All windows except the root
have a parent and are clipped by their parent. If a window is stacked on top of an-
other window, it obscures that other window for the purpose of input. If a window
has a background (almost all do), it obscures the other window for purposes of out-
put. Attempts to output to the obscured area do nothing, and no input events (for
example, pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

* win-gravity
¢ event-mask

* do-not-propagate-mask

27

Window Functions

e override-redirect
e cursor

If you specify any other attributes for an InputOnly window, a BadMatch error re-
sults.

InputOnly windows are used for controlling input events in situations where In-
putOutput windows are unnecessary. InputOnly windows are invisible; can only be
used to control such things as cursors, input event generation, and grabbing; and
cannot be used in any graphics requests. Note that InputOnly windows cannot have
InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a back-
ground pattern or tile. Pixel values can be used for solid colors. The background
and border pixmaps can be destroyed immediately after creating the window if no
further explicit references to them are to be made. The pattern can either be rela-
tive to the parent or absolute. If ParentRelative, the parent's background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing
store will be discarded. An application may wish to create a window long before it
is mapped to the screen. When a window is eventually mapped to the screen (using
XMapW ndow), the X server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position
for a top-level window. Your program must be prepared to use the actual size and
position of the top window. It is not acceptable for a client application to resize
itself unless in direct response to a human command to do so. Instead, either your
program should use the space given to it, or if the space is too small for any useful
work, your program might ask the user to resize the window. The border of your
top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowAt-
tributes structure and OR in the corresponding value bitmask in your subsequent
calls to XCr eat eW ndowand XChangeW ndowAt t ri but es, or use one of the other con-
venience functions that set the appropriate attribute. The symbols for the value
mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

/* Wndow attribute value mask bits */

#def i ne CvBackPi xmap (1L<<0)
#def i ne CwBackPi xel (1L<<1)
#def i ne CWBor der Pi xmap (1L<<2)
#def i ne CWBor der Pi xel (1L<<3)
#def i ne CWBitGavity (1L<<4)
#def i ne CWN nG avity (1L<<5)
#def i ne CWBacki ngSt or e (1L<<6)
#def i ne CwBacki ngPl anes (1L<<7)
#def i ne CWBacki ngPi xel (1L<<8)
#def i ne CWoverri deRedi rect (1L<<9)
#def i ne CWsaveUnder (1L<<10)
#def i ne CWEvent Mask (1L<<11)

28

Window Functions

#def i ne CWbont Pr opagat e (1L<<12)
#def i ne CWCol or map (1L<<13)
#def i ne CWCur sor (1L<<14)

/* Val ues */

typedef struct {

Pi xmap background_pi xmap; /* background, None, or ParentRel ative */
unsi gned | ong background_pi xel ; /* background pixel */

Pi xmap border pi xmap; /* border of the w ndow or CopyFronParent */
unsi gned | ong border_pi xel ; /* border pixel value */

int bit_gravity; /* one of bit gravity val ues */

int win_gravity; /* one of the wi ndow gravity val ues */

i nt backi ng_store; /* Not Useful, WhenMapped, Al ways */

unsi gned | ong backi ng_pl anes; /* planes to be preserved if possible */
unsi gned | ong backi ng_pi xel ; /* value to use in restoring planes */
Bool save_under; /* should bits under be saved? (popups) */

| ong event nmsk; /* set of events that should be saved */

| ong do_not propagat e_mask; /* set of events that should not propagate */
Bool override redirect; /* bool ean value for override redirect */

Col ormap col or map; /* color map to be associated with w ndow */

Cur sor cursor; /* cursor to be displayed (or None) */

} XSet W ndowAt t ri but es;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput nputOnly
back- None Yes No
ground-pixmap
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-prop- empty set Yes Yes
agate-mask
override-redirect False Yes Yes
colormap CopyFromParent Yes No

29

Window Functions

Attribute Default InputOutput nputOnly

cursor None Yes Yes

Background Attribute

Only InputOutput windows can have a background. You can set the background of
an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for
a window's background. This pixmap can be of any size, although some sizes may
be faster than others. The background-pixel attribute of a window specifies a pixel
value used to paint a window's background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or
any value you may have set in the background-pixmap. A pixmap of an undefined size
that is filled with the background-pixel is used for the background. Range checking
is not performed on the background pixel; it simply is truncated to the appropriate
number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap
and the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

* The parent window's background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results.

* If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

* A copy of the parent window's background-pixmap is not made. The parent's back-
ground-pixmap is examined each time the child window's background-pixmap is
required.

» The background tile origin always aligns with the parent window's background
tile origin. If the background-pixmap is not ParentRelative, the background tile
origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or back-
ground-pixel, overrides any previous background. The background-pixmap can be
freed immediately if no further explicit reference is made to it (the X server will
keep a copy to use when needed). If you later draw into the pixmap used for the
background, what happens is undefined because the X implementation is free to
make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions
are visible or the server is maintaining backing store, the server automatically tiles
the regions with the window's background unless the window has a background of
None. If the background is None, the previous screen contents from other windows
of the same depth as the window are simply left in place as long as the contents come
from the parent of the window or an inferior of the parent. Otherwise, the initial
contents of the exposed regions are undefined. Expose events are then generated
for the regions, even if the background-pixmap is None (see section 10.9).

30

Window Functions

Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOut-
put window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window's border. The border-pixel attribute of a window specifies a pixmap of unde-
fined size filled with that pixel be used for a window's border. Range checking is not
performed on the background pixel; it simply is truncated to the appropriate num-
ber of bits. The border tile origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster
than others) or to CopyFromParent (default). You can set the border-pixel to any
pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the
window must have the same depth, or a BadMatch error results. If you set the bor-
der-pixmap to CopyFromParent, the parent window's border-pixmap is copied. Sub-
sequent changes to the parent window's border attribute do not affect the child
window. However, the child window must have the same depth as the parent win-
dow, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made
to it. If you later draw into the pixmap used for the border, what happens is unde-
fined because the X implementation is free either to make a copy of the pixmap or
to use the same pixmap. If you specify a border-pixel, it overrides either the default
border-pixmap or any value you may have set in the border-pixmap. All pixels in the
window's border will be set to the border-pixel. Setting a new border, whether by
setting border-pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graph-
ics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be retained
when an InputOutput window is resized. The default value for the bit-gravity at-
tribute is ForgetGravity. The window gravity of a window allows you to define how
the InputOutput or InputOnly window should be repositioned if its parent is resized.
The default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved
or its border is changed, then the contents of the window are not lost but move with
the window. Changing the inside width or height of the window causes its contents
to be moved or lost (depending on the bit-gravity of the window) and causes children
to be reconfigured (depending on their win-gravity). For a change of width and
height, the (x, y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

NorthEastGravity (Width, 0)
WestGravity (0, Height/2)

31

Window Functions

Gravity Direction Coordinates
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding
pair defines the change in position of each pixel in the window. When a window with
one of these win-gravities has its parent window resized, the corresponding pair
defines the change in position of the window within the parent. When a window is
so repositioned, a GravityNotify event is generated (see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is
coupled with a change in position (x, y), then for bit-gravity the change in position of
each pixel is (—x, —y), and for win-gravity the change in position of a child when its
parent is so resized is (—x, —y). Note that StaticGravity still only takes effect when
the width or height of the window is changed, not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window's contents are always dis-
carded after a size change, even if a backing store or save under has been request-
ed. The window is tiled with its background and zero or more Expose events are
generated. If no background is defined, the existing screen contents are not altered.
Some X servers may also ignore the specified bit-gravity and always generate Ex-
pose events.

The contents and borders of inferiors are not affected by their parent's bit-gravity.
A server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved),
except the child is also unmapped when the parent is resized, and an UnmapNotify
event is generated.

Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of In-
putOutput windows. If the X server maintains the contents of a window, the off-
screen saved pixels are known as backing store. The backing store advises the X
server on what to do with the contents of a window. The backing-store attribute can
be set to NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining con-
tents is unnecessary, although some X implementations may still choose to maintain
contents and, therefore, not generate Expose events. A backing-store attribute of
WhenMapped advises the X server that maintaining contents of obscured regions
when the window is mapped would be beneficial. In this case, the server may gen-
erate an Expose event when the window is created. A backing-store attribute of
Always advises the X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, this is
a request to the X server to maintain complete contents, not just the region within
the parent window boundaries. While the X server maintains the window's contents,

32

Window Functions

Expose events normally are not generated, but the X server may stop maintaining
contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics re-
quests (and source, when the window is the source). However, regions obscured by
inferior windows are not included.

Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example,
pop-up menus) request that the system preserve the screen contents under them,
so the temporarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True,
the X server is advised that, when this window is mapped, saving the contents of
windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing store
and during save unders. The default value for the backing-planes attribute is all
bits set to 1. You can set backing pixel to specify what bits to use in planes not
covered by backing planes. The default value for the backing-pixel attribute is all
bits set to 0. The X server is free to save only the specified bit planes in the backing
store or the save under and is free to regenerate the remaining planes with the
specified pixel value. Any extraneous bits in these values (that is, those bits beyond
the specified depth of the window) may be simply ignored. If you request backing
store or save unders, you should use these members to minimize the amount of off-
screen memory required to store your window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput
or InputOnly window (or, for some event types, inferiors of this window). The event
mask is the bitwise inclusive OR of zero or more of the valid event mask bits. You
can specify that no maskable events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propa-
gated to ancestor windows when no client has the event type selected in this In-
putOutput or InputOnly window. The do-not-propagate-mask is the bitwise inclusive
OR of zero or more of the following masks: KeyPress, KeyRelease, ButtonPress,
ButtonRelease, PointerMotion, ButtonlMotion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, and ButtonMotion. You can specify that all events
are propagated by setting NoEventMask (default).

Override Redirect Flag

To control window placement or to add decoration, a window manager often needs
to intercept (redirect) any map or configure request. Pop-up windows, however,
often need to be mapped without a window manager getting in the way. To control

33

Window Functions

whether an InputOutput or InputOnly window is to ignore these structure control
facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this
window should override a SubstructureRedirectMask on the parent. You can set the
override-redirect flag to True or False (default). Window managers use this infor-
mation to avoid tampering with pop-up windows (see also chapter 14).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the
InputOutput window. The colormap must have the same visual type as the window,
or a BadMatch error results. X servers capable of supporting multiple hardware
colormaps can use this information, and window managers can use it for calls to
Xl nst al | Col or map. You can set the colormap attribute to a colormap or to Copy-
FromParent (default).

If you set the colormap to CopyFromParent, the parent window's colormap is copied
and used by its child. However, the child window must have the same visual type
as the parent, or a BadMatch error results. The parent window must not have a
colormap of None, or a BadMatch error results. The colormap is copied by sharing
the colormap object between the child and parent, not by making a complete copy
of the colormap contents. Subsequent changes to the parent window's colormap
attribute do not affect the child window.

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in
the InputOutput or InputOnly window. You can set the cursor to a cursor or None
(default).

If you set the cursor to None, the parent's cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent's cursor will cause
an immediate change in the displayed cursor. By calling XFr eeCur sor, the cursor
can be freed immediately as long as no further explicit reference to it is made.

Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-lev-
el functions specifically for creating and placing top-level windows, which are dis-
cussed in the appropriate toolkit documentation. If you do not use a toolkit, howev-
er, you must provide some standard information or hints for the window manager
by using the Xlib inter-client communication functions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root
window), you must observe the following rules so that all applications interact rea-
sonably across the different styles of window management:

* You must never fight with the window manager for the size or placement of your
top-level window.

* You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like " Please make me bigger" in its
window.

34

Window Functions

* You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you must
be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

* If you do not use a toolkit that automatically sets standard window properties,
you should set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Con-
ventions Manual.

XCr eat eW ndow is the more general function that allows you to set specific window
attributes when you create a window. XCr eat eSi npl eW ndow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window
cannot be used as a drawable (that is, as a source or destination for graphics re-
quests). InputOnly and InputOutput windows act identically in other respects (prop-
erties, grabs, input control, and so on). Extension packages can define other classes
of windows.

To create an unmapped window and set its window attributes, use XCr eat eW ndow.

W ndow XCr eat eW ndow(*di spl ay, parent, v, hei ght border _wi dt h,

depth, class, *visual, valuemask, *attributes);
display Specifies the connection to the X server.
parent Specifies the parent window. borders and are relative

to the inside of the parent window's borders

X

y Specify the x and y coordinates(Xy. and do not include
the created window's borders

width

height Specify the width and height(Wh. The dimensions
must be nonzero, or a BadValue error results.

border width Specifies the width of the created window's border
in pixels.

depth Specifies the window's depth. A depth of Copy-
FromParent means the depth is taken from the par-
ent.

class Specifies the created window's class. You can pass
InputOutput, InputOnly, or CopyFromParent. A class
of CopyFromParent means the class is taken from the
parent.

visual Specifies the visual type. A visual of CopyFromParent

means the visual type is taken from the parent.

35

Window Functions

valuemask Specifies which window attributes are defined in the
attributes argument. This mask is the bitwise inclu-
sive OR of the valid attribute mask bits. If valuemask
is zero, the attributes are ignored and are not refer-
enced.

attributes Specifies the structure from which the values (as
specified by the value mask) are to be taken. The val-
ue mask should have the appropriate bits set to indi-
cate which attributes have been set in the structure.

The XCr eat eW ndowfunction creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the
origin [0, O] at the upper-left corner. Coordinates are integral, in terms of pixels,
and coincide with pixel centers. Each window and pixmap has its own coordinate
system. For a window, the origin is inside the border at the inside, upper-left corner.

The border width for an InputOnly window must be zero, or a BadMatch error re-
sults. For class InputOutput, the visual type and depth must be a combination sup-
ported for the screen, or a BadMatch error results. The depth need not be the same
as the parent, but the parent must not be a window of class InputOnly, or a Bad-
Match error results. For an InputOnly window, the depth must be zero, and the vi-
sual must be one supported by the screen. If either condition is not met, a BadMatch
error results. The parent window, however, may have any depth and class. If you
specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user's display. To display
the window, call XMapW ndow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDef i neCur sor .

The window will not be visible on the screen unless it and all of its ancestors are
mapped and it is not obscured by any of its ancestors.

XCr eat eW ndow can generate BadAlloc, BadColor, BadCursor, BadMatch, Bad-
Pixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCr eat eSi npl eW ndow.

W ndow XCreat eSi npl eWndow *di spl ay, par ent, Y, hei ght
border _wi dth, border, background);

display Specifies the connection to the X server.

parent Specifies the parent window. and are relative to the

inside of the parent window's borders

X

Y Specify the x and y coordinates(Xy. and do not include
the created window's borders

width

36

Window Functions

height Specify the width and height(Wh. The dimensions
must be nonzero, or a BadValue error results.

border width Specifies the width of the created window's border
in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCr eat eSi npl eW ndow function creates an unmapped InputOutput subwindow
for a specified parent window, returns the window ID of the created window, and
causes the X server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped. The border width for an InputOnly
window must be zero, or a BadMatch error results. XCr eat eSi npl eW ndow inher-
its its depth, class, and visual from its parent. All other window attributes, except
background and border, have their default values.

XCr eat eSi npl eW ndow can generate BadAlloc, BadMatch, BadValue, and BadWin-
dow errors.

Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwin-
dows of a window.

To destroy a window and all of its subwindows, use XDest r oyW ndow.
XDest royW ndow(*display, w;

display Specifies the connection to the X server.

w Specifies the window.

The XDest r oyW ndow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each
window. The window should never be referenced again. If the window specified by
the w argument is mapped, it is unmapped automatically. The ordering of the De-
stroyNotify events is such that for any given window being destroyed, DestroyNotify
is generated on any inferiors of the window before being generated on the window
itself. The ordering among siblings and across subhierarchies is not otherwise con-
strained. If the window you specified is a root window, no windows are destroyed.
Destroying a mapped window will generate Expose events on other windows that
were obscured by the window being destroyed.

XDest r oyW ndow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDest r oy Subwi ndows.
XDest r oySubwi ndows(*di splay, w);

display Specifies the connection to the X server.

w Specifies the window.

37

Window Functions

The XDest r oySubwi ndows function destroys all inferior windows of the specified
window, in bottom-to-top stacking order. It causes the X server to generate a De-
stroyNotify event for each window. If any mapped subwindows were actually de-
stroyed, XDest r oySubwi ndows causes the X server to generate Expose events on the
specified window. This is much more efficient than deleting many windows one at a
time because much of the work need be performed only once for all of the windows,
rather than for each window. The subwindows should never be referenced again.

XDest r oySubwi ndows can generate a BadWindow error.

Mapping Windows

A window is considered mapped if an XMapW ndow call has been made on it. It may
not be visible on the screen for one of the following reasons:

¢ It is obscured by another opaque window.
¢ One of its ancestors is not mapped.
It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible
on the screen. A client receives the Expose events only if it has asked for them.
Windows retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window
(usually a root window), a map request initiated by other clients on a child window
is not performed, and the window manager is sent a MapRequest event. However,
if the override-redirect flag on the child had been set to True (usually only on pop-
up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients' win-
dows and then decide to map the window to its final location. A window manager
that wants to provide decoration might reparent the child into a frame first. For
further information, see sections 3.2.8 and 10.10. Only a single client at a time can
select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the
client receives a ResizeRequest event.

To map a given window, use XMapW ndow.

XVapW ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapW ndow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display

the window but marks it as eligible for display when the ancestor becomes mapped.
Such a window is called unviewable. When all its ancestors are mapped, the window

38

Window Functions

becomes viewable and will be visible on the screen if it is not obscured by another
window. This function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapW ndow function does not map the window. Other-
wise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the
X server tiles the window with its background. If the window's background is unde-
fined, the existing screen contents are not altered, and the X server generates zero
or more Expose events. If backing-store was maintained while the window was un-
mapped, no Expose events are generated. If backing-store will now be maintained,
a full-window exposure is always generated. Otherwise, only visible regions may be
reported. Similar tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapW ndow generates Expose events on

each InputOutput window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted
twice. To avoid this, first ask for Expose events and then map the window, so the
client processes input events as usual. The event list will include Expose for each
window that has appeared on the screen. The client's normal response to an Expose
event should be to repaint the window. This method usually leads to simpler pro-
grams and to proper interaction with window managers.

XMapW ndow can generate a BadWindow error.

To map and raise a window, use XMapRai sed.

XMapRai sed(*display, w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapRai sed function essentially is similar to XMapW ndow in that it maps the
window and all of its subwindows that have had map requests. However, it also
raises the specified window to the top of the stack. For additional information, see
XMapW ndow.

XMapRai sed can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwi ndows.
XMapSubwi ndows(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwi ndows function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly dis-
played window. This may be much more efficient than mapping many windows one
at a time because the server needs to perform much of the work only once, for all
of the windows, rather than for each window.

XMapSubwi ndows can generate a BadWindow error.

39

Window Functions

Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.
To unmap a window, use XUnmapW ndow.

XUnmapW ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapW ndow function unmaps the specified window and causes the X server
to generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapW ndowhas no effect. Normal exposure processing on formerly obscured win-
dows is performed. Any child window will no longer be visible until another map
call is made on the parent. In other words, the subwindows are still mapped but are
not visible until the parent is mapped. Unmapping a window will generate Expose
events on windows that were formerly obscured by it.

XUnmapW ndow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwi ndows.
XUnmapSubwi ndows(*di splay, Ww;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwi ndows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows. Using
this function is much more efficient than unmapping multiple windows one at a
time because the server needs to perform much of the work only once, for all of the
windows, rather than for each window.

XUnmapSubwi ndows can generate a BadWindow error.

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move
and resize a window, or change a window's border width. To change one of these
parameters, set the appropriate member of the XWindowChanges structure and
OR in the corresponding value mask in subsequent calls to XConf i gur eW ndow. The
symbols for the value mask bits and the XWindowChanges structure are:

/* Con#gure w ndow val ue mask bits */

#defi ne CWK (1<<0)
#defi ne Wy (1<<1)
#defi ne CW dt h (1<<2)
#defi ne CWHei ght (1<<3)

40

Window Functions

#def i ne CWBor der W dt h (1<<4)
#def i ne CWsi bl i ng (1<<b)
#def i ne CW5t ackMbde (1<<6)

/* Val ues */

typedef struct {
int x, vy;
i nt width, height;
i nt border_wi dth;
W ndow si bl i ng;
i nt stack_node;

} XW ndowChanges;

The x and y members are used to set the window's x and y coordinates, which are
relative to the parent's origin and indicate the position of the upper-left outer corner
of the window. The width and height members are used to set the inside size of the
window, not including the border, and must be nonzero, or a BadValue error results.
Attempts to configure a root window have no effect.

The border width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window's origin. If you attempt to
set the border-width attribute of an InputOnly window nonzero, a BadMatch error
results.

The sibling member is used to set the sibling window for stacking operations. The
stack mode member is used to set how the window is to be restacked and can be
set to Above, Below, Toplf, BottomlIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, if some oth-
er client has selected ResizeRedirectMask on the window and the inside width or
height of the window is being changed, a ResizeRequest event is generated, and the
current inside width and height are used instead. Note that the override-redirect
flag of the window has no effect on ResizeRedirectMask and that SubstructureRedi-
rectMask on the parent has precedence over ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the window
actually changes. GravityNotify events are generated after ConfigureNotify events.
If the inside width or height of the window has actually changed, children of the
window are affected as specified.

If a window's size actually changes, the window's subwindows move according to
their window gravity. Depending on the window's bit gravity, the contents of the
window also may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is
performed on these formerly obscured windows, including the window itself and
its inferiors. As a result of increasing the width or height, exposure processing is

41

Window Functions

also performed on any new regions of the window and any regions where window
contents are lost.

The restack check (specifically, the computation for BottomlIf, TopIf, and Opposite)
is performed with respect to the window's final size and position (as controlled by
the other arguments of the request), not its initial position. If a sibling is specified
without a stack mode, a BadMatch error results.

If a sibling and a stack mode are specified, the window is restacked as follows:

Above The window is placed
just above the sibling.

Below The window is placed
just below the sibling.

Toplf If the sibling occludes the window, the
window is placed at the top of the stack.

BottomlIf If the window occludes the
sibling, the window is placed
at the bottom of the stack.

Opposite If the sibling occludes the win-
dow, the window is placed at the
top of the stack. If the window oc-
cludes the sibling, the window is
placed at the bottom of the stack.

If a stack mode is specified but no sibling is specified, the window is restacked as
follows:

Above The window is placed
at the top of the stack.
Below The window is placed at
the bottom of the stack.
Toplf If any sibling occludes the window, the

window is placed at the top of the stack.

If the window occludes any
sibling, the window is placed
at the bottom of the stack.

Opposite If any sibling occludes the win-
dow, the window is placed at the
top of the stack. If the window oc-
cludes any sibling, the window is
placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window's size, location, stacking, or border, use XConf i gur eW ndow.
XConfi gureW ndow *display, w, value_mask, *values);

display Specifies the connection to the X server.

w Specifies the window (Wi.

42

Window Functions

value mask Specifies which values are to be set using information in
the values structure. This mask is the bitwise inclusive
OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConf i gur eW ndow function uses the values specified in the XWindowChanges
structure to reconfigure a window's size, position, border, and stacking order. Values
not specified are taken from the existing geometry of the window.

If a sibling is specified without a stack mode or if the window is not actually a sib-
ling, a BadMatch error results. Note that the computations for BottomlIf, Toplf, and
Opposite are performed with respect to the window's final geometry (as controlled
by the other arguments passed to XConfi gur eW ndow), not its initial geometry. Any
backing store contents of the window, its inferiors, and other newly visible windows
are either discarded or changed to reflect the current screen contents (depending
on the implementation).

XConf i gur eW ndow can generate BadMatch, BadValue, and BadWindow errors.
To move a window without changing its size, use XMoveW ndow.

XMoveW ndow(*display, w, vy);

display Specifies the connection to the X server.

w Specifies the window (Wi. of the window's border or the
window itself if it has no border

X
Y Specify the x and y coordinates(Xy.

The XMoveW ndow function moves the specified window to the specified x and y co-
ordinates, but it does not change the window's size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window's contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, the window
is moved.

XMoveW ndow can generate a BadWindow error.

To change a window's size without changing the upper-left coordinate, use XRe-
si zeW ndow.

XResi zeW ndow(*display, w height);

display Specifies the connection to the X server.
w Specifies the window. after the call completes
width

43

Window Functions

height Specify the width and height(Wh.

The XResi zeW ndowfunction changes the inside dimensions of the specified window,
not including its borders. This function does not change the window's upper-left
coordinate or the origin and does not restack the window. Changing the size of a
mapped window may lose its contents and generate Expose events. If a mapped
window is made smaller, changing its size generates Expose events on windows that
the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. If either width or height
is zero, a BadValue error results.

XResi zeW ndow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResi zeW ndow.

XMoveResi zeW ndow *display, w, vy, height);

display Specifies the connection to the X server.
w Specifies the window (Wi.

X

y Specify the x and y coordinates(Xy.
width

height Specify the width and height(Wh.

The XMoveResi zeW ndow function changes the size and location of the specified win-
dow without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the
window formerly obscured.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, the window
size and location are changed.

XMoveResi zeW ndow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSet W ndowBor der W dt h.

XSet W ndowBor der Wdt h(*di splay, w wdth);

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSet W ndowBor der W dt h function sets the specified window's border width to
the specified width.

44

Window Functions

XSet W ndowBor der W dt h can generate a BadWindow error.

Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack win-
dows.

To raise a window so that no sibling window obscures it, use XRai seW ndow.
XRai seW ndow(*display, w;

display Specifies the connection to the X server.

w Specifies the window.

The XRai seW ndow function raises the specified window to the top of the stack so
that no sibling window obscures it. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then raising a window is analogous to moving the
sheet to the top of the stack but leaving its x and y location on the desk constant.
Raising a mapped window may generate Expose events for the window and any
mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no processing is performed. Otherwise, the window is raised.

XRai seW ndow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLower -
W ndow.

XLower W ndow(*di splay, w;
display Specifies the connection to the X server.
w Specifies the window.

The XLower W ndow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then lowering a window is analogous
to moving the sheet to the bottom of the stack but leaving its x and y location on
the desk constant. Lowering a mapped window will generate Expose events on any
windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no processing is performed. Otherwise, the window is low-
ered to the bottom of the stack.

XLower W ndow can generate a BadWindow error.
To circulate a subwindow up or down, use XGi r cul at eSubwi ndows.
XCi rcul at eSubwi ndows(*di splay, w, direction);

display Specifies the connection to the X server.

45

Window Functions

w Specifies the window.

direction Specifies the direction (up or down) that you want to cir-
culate the window. You can pass RaiseL.owest or Lower-
Highest.

The XGCi r cul at eSubwi ndows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCi r cul at eSubwi ndows raises
the lowest mapped child (if any) that is occluded by another child to the top of
the stack. If you specify LowerHighest, XCi r cul at eSubwi ndows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Expo-
sure processing is then performed on formerly obscured windows. If some other
client has selected SubstructureRedirectMask on the window, the X server gener-
ates a CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCi r cul at eSubwi ndows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded
by another child, use XCi r cul at eSubwi ndows Up.

XCi rcul at eSubwi ndowsUp(*di splay, w);
display Specifies the connection to the X server.
w Specifies the window.

The XGCi r cul at eSubwi ndowsUp function raises the lowest mapped child of the spec-
ified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XGi r cul at eSubwi ndows with RaiseL.owest specified.

XCi r cul at eSubwi ndowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XGCi r cul at eSubwi ndowsDown.

XCi rcul at eSubwi ndowsDown(*di splay, Ww);
display Specifies the connection to the X server.
w Specifies the window.

The XC r cul at eSubwi ndowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCi r cul at eSubwi ndows with LowerHighest specified.

XCi r cul at eSubwi ndowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRest ackW ndows.

XRest ackW ndows(*di splay, w ndows[], nw ndows);

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be
restacked.

46

Window Functions

nwindows Specifies the number of windows to be restacked.

The XRest ackW ndows function restacks the windows in the order specified, from
top to bottom. The stacking order of the first window in the windows array is unaf-
fected, but the other windows in the array are stacked underneath the first window,
in the order of the array. The stacking order of the other windows is not affected.
For each window in the window array that is not a child of the specified window,
a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates Config-
ureRequest events for each window whose override-redirect flag is not set, and no
further processing is performed. Otherwise, the windows will be restacked in top-
to-bottom order.

XRest ackW ndows can generate a BadWindow error.

Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeW n-
dowAt t ri but es is the more general function that allows you to set one or more win-
dow attributes provided by the XSetWindowAttributes structure. The other func-
tions described in this section allow you to set one specific window attribute, such
as a window's background.

To change one or more attributes for a given window, use XChangeW ndowAt tri b-
ut es.

XChangeW ndowAt tri butes(*display, w valuenmask, *attributes);

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the

attributes argument. This mask is the bitwise inclusive
OR of the valid attribute mask bits. If valuemask is ze-
ro, the attributes are ignored and are not referenced.
The values and restrictions are the same as for XCr e-
at eW ndow.

attributes Specifies the structure from which the values (as speci-
fied by the value mask) are to be taken. The value mask
should have the appropriate bits set to indicate which
attributes have been set in the structure (see section
3.2).

Depending on the valuemask, the XChangeW ndowAt t r i but es function uses the win-
dow attributes in the XSetWindowAttributes structure to change the specified win-
dow attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use X ear W ndow. Setting the
border or changing the background such that the border tile origin changes causes
the border to be repainted. Changing the background of a root window to None

47

Window Functions

or ParentRelative restores the default background pixmap. Changing the border of
a root window to CopyFromParent restores the default border pixmap. Changing
the win-gravity does not affect the current position of the window. Changing the
backing-store of an obscured window to WhenMapped or Always, or changing the
backing-planes, backing-pixel, or save-under of a mapped window may have no im-
mediate effect. Changing the colormap of a window (that is, defining a new map,
not changing the contents of the existing map) generates a ColormapNotify event.
Changing the colormap of a visible window may have no immediate effect on the
screen because the map may not be installed (see Xl nst al | Col or map). Changing
the cursor of a root window to None restores the default cursor. Whenever possible,
you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are main-
tained separately. When an event is generated, it is reported to all interested clients.
However, only one client at a time can select for SubstructureRedirectMask, Resiz-
eRedirectMask, and ButtonPressMask. If a client attempts to select any of these
event masks and some other client has already selected one, a BadAccess error re-
sults. There is only one do-not-propagate-mask for a window, not one per client.

XChangeW ndowAt t ri but es can generate BadAccess, BadColor, BadCursor, Bad-
Match, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSet W ndowBackgr ound.

XSet W ndowBackground(*di splay, w, background_pixel);

display Specifies the connection to the X server.

w Specifies the window.

background pixel Specifies the pixel that is to be used for the back-
ground.

The XSet W ndowBackgr ound function sets the background of the window to the spec-
ified pixel value. Changing the background does not cause the window contents to
be changed. XSet W ndowBackgr ound uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnly window,
a BadMatch error results.

XSet W ndowBackgr ound can generate BadMatch and BadWindow errors.
To set the background of a window to a given pixmap, use XSet W ndowBackgr ound-
Pi xmap.

XSet W ndowBackgr oundPi xmap(*di splay, w, background_pi xmap) ;

display Specifies the connection to the X server.

w Specifies the window.

background pixmap Specifies the background pixmap, ParentRelative, or
None.

The XSet W ndowBackgr oundPi xmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed
if no further explicit references to it are to be made. If ParentRelative is specified,

48

Window Functions

the background pixmap of the window's parent is used, or on the root window, the
default background is restored. If you try to change the background of an InputOnly
window, a BadMatch error results. If the background is set to None, the window
has no defined background.

XSet W ndowBackgr oundPi xmap can generate BadMatch, BadPixmap, and BadWin-
dow errors. XSet W ndowBackground and XSet W ndowBackgr oundPi xmap do not
change the current contents of the window.

To change and repaint a window's border to a given pixel, use XSet W ndowBor der .

XSet W ndowBor der (*di spl ay, w, border_pixel);

display Specifies the connection to the X server.
w Specifies the window.
border pixel Specifies the entry in the colormap.

The XSet W ndowBor der function sets the border of the window to the pixel value
you specify. If you attempt to perform this on an InputOnly window, a BadMatch
error results.

XSet W ndowBor der can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSet W ndowBor der -
Pi xmap.

XSet W ndowBor der Pi xmap(*di splay, w, border_pixmap);

display Specifies the connection to the X server.
w Specifies the window.
border pixmap Specifies the border pixmap or CopyFromParent.

The XSet W ndowBor der Pi xmap function sets the border pixmap of the window to
the pixmap you specify. The border pixmap can be freed immediately if no further
explicit references to it are to be made. If you specify CopyFromParent, a copy of
the parent window's border pixmap is used. If you attempt to perform this on an
InputOnly window, a BadMatch error results.

XSet W ndowBor der Pi xmap can generate BadMatch, BadPixmap, and BadWindow er-
rors.

To set the colormap of a given window, use XSet W ndowCol or nap.

XSet W ndowCol or map(*display, w, col ornap);

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

The XSet W ndowCol or map function sets the specified colormap of the specified win-
dow. The colormap must have the same visual type as the window, or a BadMatch
error results.

49

Window Functions

XSet W ndowCol or map can generate BadColor, BadMatch, and BadWindow errors.
To define which cursor will be used in a window, use XDef i neCur sor .

XDef i neCursor(*display, w, cursor);

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndef i neCur sor.

XDef i neCur sor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndef i neCur sor .
XUndef i neCursor(*display, w;

display Specifies the connection to the X server.
w Specifies the window.

The XUndef i neCur sor function undoes the effect of a previous XDef i neCur sor for
this window. When the pointer is in the window, the parent's cursor will now be
used. On the root window, the default cursor is restored.

XUndef i neCur sor can generate a BadWindow error.

50

Chapter 4. Window Information
Functions

After you connect the display to the X server and create a window, you can use the
Xlib window information functions to:

¢ Obtain information about a window

» Translate screen coordinates

¢ Manipulate property lists

* Obtain and change window properties

* Manipulate selections

Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window
tree, the window's current attributes, the window's current geometry, or the current
pointer coordinates. Because they are most frequently used by window managers,
these functions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window,
use XQueryTree.

Status XQueryTree(*display, w, *root _return, *parent _return,
**children_return, *nchildren_return);

display Specifies the connection to the X server. you want to
obtain

w Specifies the window (Wi.

root_return Returns the root window.

parent return Returns the parent window.

children_return Returns the list of children.

nchildren_return Returns the number of children.

The XQuer yTr ee function returns the root ID, the parent window ID, a pointer to
the list of children windows (NULL when there are no children), and the number
of children in the list for the specified window. The children are listed in current
stacking order, from bottom-most (first) to top-most (last). XQuer yTr ee returns zero
if it fails and nonzero if it succeeds. To free a non-NULL children list when it is no
longer needed, use XFr ee.

XQuer yTr ee can generate a BadWindow error.

To obtain the current attributes of a given window, use XGet W ndowAt t ri but es.

51

Window Informa-

tion Functions

St at us XGet W ndowAt t ri but es(*di spl ay,

display

w

window_attributes return

w, *wi ndow attributes_return);

Specifies the connection to the X server.

Specifies the window (Wi.

Returns the specified window's attributes in the

XWindowAttributes structure.

The XGet W ndowAt t ri but es function returns the current attributes for the specified

window to an XWindowAttributes structure.

typedef struct {

int x, vy;

i nt width, height;

i nt border_wi dth;

i nt depth;

Vi sual *visual;

W ndow r oot ;

int class;

int bit_gravity;

int win_gravity;

i nt backi ng_store;

unsi gned | ong backi ng_pl anes;
unsi gned | ong backi ng_pi xel ;
Bool save_under;

Col ormap col or map;

Bool nap_install ed;

int map_state;

I ong all _event nasks;

| ong your _event mask;

| ong do_not propagat e_mask;
Bool override_ redirect;
Screen *screen;

} XW ndowAttri butes;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

| ocati on of wi ndow */

wi dt h and hei ght of wi ndow */

border wi dth of w ndow */

depth of wi ndow */

t he associ ated visual structure */

root of screen containing w ndow */

| nput Qut put, | nput Only*/

one of the bit gravity val ues */

one of the wi ndow gravity val ues */

Not Useful , WhenMapped, Al ways */

pl anes to be preserved if possible */

val ue to be used when restoring planes */
bool ean, should bits under be saved? */
color map to be associated with w ndow */
bool ean, is color nap currently installed*/
| sUnmapped, |sUnvi ewabl e, |sViewable */
set of events all people have interest
ny event mask */

set of events that should not propagate */
bool ean value for override-redirect */
back pointer to correct screen */

i n*/

The x and y members are set to the upper-left outer corner relative to the parent
window's origin. The width and height members are set to the inside size of the
window, not including the border. The border width member is set to the window's
border width in pixels. The depth member is set to the depth of the window (that
is, bits per pixel for the object). The visual member is a pointer to the screen's
associated Visual structure. The root member is set to the root window of the screen
containing the window. The class member is set to the window's class and can be
either InputOutput or InputOnly.

The bit gravity member is set to the window's bit gravity and can be one of the
following:

ForgetGravity
NorthWestGravity

EastGravity
SouthWestGravity

52

Window Informa-
tion Functions

NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity

The win_gravity member is set to the window's window gravity and can be one of
the following:

UnmapGravity SouthWestGravity
NorthWestGravity SouthGravity
NorthGravity SouthEastGravity
NorthEastGravity StaticGravity
WestGravity CenterGravity
EastGravity

For additional information on gravity, see section 3.2.3.

The backing store member is set to indicate how the X server should maintain
the contents of a window and can be WhenMapped, Always, or NotUseful. The
backing planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing stores and during
save unders. The backing pixel member is set to indicate what values to use for
planes not set in backing planes.

The save under member is set to True or False. The colormap member is set to
the colormap for the specified window and can be a colormap ID or None. The
map installed member is set to indicate whether the colormap is currently installed
and can be True or False. The map state member is set to indicate the state of
the window and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is
used if the window is mapped but some ancestor is unmapped.

The all event masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your event mask member is set to
the bitwise inclusive OR of all event masks selected by the querying client. The
do not propagate mask member is set to the bitwise inclusive OR of the set of
events that should not propagate.

The override redirect member is set to indicate whether this window overrides
structure control facilities and can be True or False. Window manager clients should
ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the
correct screen. This makes it easier to obtain the screen information without having
to loop over the root window fields to see which field matches.

XGet W ndowAt t ri but es can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGet Geonetry.

Status XGet Geonetry(*displ ay, d, *root _return, *y return,
*hei ght _return, *border_width return, *depth_return);

display Specifies the connection to the X server.

d Specifies the drawable(Dr.

root return Returns the root window.

53

Window Informa-
tion Functions

X_return

y return Return the x and y coordinates that define the lo-
cation of the drawable. For a window, these coordi-
nates specify the upper-left outer corner relative to
its parent's origin. For pixmaps, these coordinates
are always zero.

width_return

height return Return the drawable's dimensions (width and
height). For a window, these dimensions specify the
inside size, not including the border.

border width _return Returns the border width in pixels. If the drawable is
a pixmap, it returns zero.

depth _return Returns the depth of the drawable (bits per pixel for
the object).

The XGet Geonet ry function returns the root window and the current geometry of
the drawable. The geometry of the drawable includes the x and y coordinates, width
and height, border width, and depth. These are described in the argument list. It is
legal to pass to this function a window whose class is InputOnly.

XGet Geonet ry can generate a BadDrawable error.

Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the co-
ordinate space of one window to another window or need to determine which win-
dow the pointing device is in. XTr ansl at eCoor di nat es and XQuer yPoi nt er fulfill
these needs (and avoid any race conditions) by asking the X server to perform these
operations.

To translate a coordinate in one window to the coordinate space of another window,
use XTr ansl at eCoor di nat es.

Bool XTransl at eCoordi nates(*display, dest_w, src_y, *dest_y return,
*child_ return);

display Specifies the connection to the X server.

src w Specifies the source window.

dest w Specifies the destination window.

Src X

src y gpecify the x and y coordinates within the source win-
ow.

dest x_return

dest y return Return the x and y coordinates within the destination
window.

54

Window Informa-
tion Functions

child return Returns the child if the coordinates are contained in
a mapped child of the destination window.

If XTr ansl at eCoor di nat es returns True, it takes the src x and src_y coordinates rel-
ative to the source window's origin and returns these coordinates to dest x return
and dest y return relative to the destination window's origin. If XTr ansl at eCoor -

di nat es returns False, src_ w and dest w are on different screens, and dest x return
and dest y return are zero. If the coordinates are contained in a mapped child of
dest_w, that child is returned to child return. Otherwise, child return is set to None.

XTransl at eCoor di nat es can generate a BadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer coordi-
nates relative to a specified window, use XQuer yPoi nt er .

Bool XQueryPointer(*display, W, *chil d_return, *root _y return,
*Wn_y return, *mask return);

display Specifies the connection to the X server.

w Specifies the window.

root return Returns the root window (Ro.

child return Returns the child window that the pointer is located
in, if any.

root x_return

root_y return Return the pointer coordinates relative to the root
window's origin.

win_x_return

win_y return Return the pointer coordinates relative to the speci-
fied window.

mask_return Returns the current state of the modifier keys and
pointer buttons.

The XQuer yPoi nt er function returns the root window the pointer is logically on
and the pointer coordinates relative to the root window's origin. If XQuer yPoi nt -
er returns False, the pointer is not on the same screen as the specified window,
and XQuer yPoi nter returns None to child return and zero to win x return and
win y return. If XQuer yPoi nt er returns True, the pointer coordinates returned to
win x return and win y return are relative to the origin of the specified window.
In this case, XQuer yPoi nt er returns the child that contains the pointer, if any, or
else None to child return.

XQuer yPoi nt er returns the current logical state of the keyboard buttons and the
modifier keys in mask return. It sets mask return to the bitwise inclusive OR of one
or more of the button or modifier key bitmasks to match the current state of the
mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical
state if device event processing is frozen (see section 12.1).

XQuer yPoi nt er can generate a BadWindow error.

55

Window Informa-
tion Functions

Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on),
and users can define any other arbitrary information and associate it with windows.
Each property has a name, which is an ISO Latin-1 string. For each named proper-
ty, a unique identifier (atom) is associated with it. A property also has a type, for
example, string or integer. These types are also indicated using atoms, so arbitrary
new types can be defined. Data of only one type may be associated with a single
property name. Clients can store and retrieve properties associated with windows.
For efficiency reasons, an atom is used rather than a character string. Xl nt er nAt om
can be used to obtain the atom for property names.

A property is also stored in one of several possible formats. The X server can store
the information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This per-
mits the X server to present the data in the byte order that the client expects. If
you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, see appendix C. The type
of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions.
The atoms for these properties are defined in <X11/ Xat om h>. To avoid name
clashes with user symbols, the #def i ne name for each atom has the XA prefix. For
an explanation of the functions that let you get and set much of the information
stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are
specified in other X Consortium standards, such as the Inter-Client Communication
Conventions Manual and the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique
atom IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

* Selections

* Property names
* Property types
* Font properties

* Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:
PRIMARY SECONDARY

The built-in property names are:

56

Window Informa-
tion Functions

CUT BUFFERO
CUT BUFFERI

CUT BUFFER2

CUT BUFFER3

CUT BUFFER4

CUT BUFFER5

CUT BUFFER6

CUT BUFFER7
RGB_BEST MAP
RGB_BLUE_MAP
RGB_DEFAULT MAP
RGB_GRAY MAP
RGB_GREEN MAP
RGB_RED MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER

The built-in font property names are:

MIN SPACE

NORM SPACE

MAX SPACE

END SPACE
SUPERSCRIPT X
SUPERSCRIPT Y
SUBSCRIPT X
SUBSCRIPT Y
UNDERLINE POSITION
UNDERLINE THICKNESS
FONT NAME

FULL NAME

RESOURCE_MANAGER
WM_CLASS

WM _CLIENT MACHINE
WM_COLORMAP WINDOWS
WM_COMMAND
WM_HINTS

WM _ICON NAME

WM _ICON_SIZE

WM _NAME

WM_NORMAL HINTS
WM_PROTOCOLS
WM_STATE

WM _TRANSIENT FOR
WM_ZOOM HINTS

PIXMAP
POINT
RGB_COLOR MAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

STRIKEOUT DESCENT
STRIKEOUT ASCENT
ITALIC ANGLE

X HEIGHT

QUAD WIDTH
WEIGHT

POINT SIZE
RESOLUTION
COPYRIGHT

NOTICE

FAMILY NAME

CAP HEIGHT

For further information about font properties, see section 8.5.

To return an atom for a given name, use Xl nt er nAt om

At om Xl nternAt om(*di spl ay,
display

atom_name

*at om _nane,

only if_exists);

Specifies the connection to the X server.

Specifies the name associated with the atom you

want returned.

only if exists

Specifies a Boolean value that indicates whether the

atom must be created.

57

Window Informa-
tion Functions

The Xl nt er nAt omfunction returns the atom identifier associated with the specified
atom name string. If only if exists is False, the atom is created if it does not ex-
ist. Therefore, XI nt er nAt omcan return None. If the atom name is not in the Host
Portable Character Encoding, the result is implementation-dependent. Uppercase
and lowercase matter; the strings *~ "thing', " "Thing", and " "thinG" all designate dif-
ferent atoms. The atom will remain defined even after the client's connection closes.
It will become undefined only when the last connection to the X server closes.

XI nt er nAt omcan generate BadAlloc and BadValue errors.
To return atoms for an array of names, use Xl nt er nAt ons.

Status Xl nternAtons(*display, **names, count, only_ if_exists,
*atonms_return);

display Specifies the connection to the X server.

names Specifies the array of atom names.

count Specifies the number of (Cn.

only if exists Specifies a Boolean value that indicates whether the

atom must be created.
atoms_return Returns the atoms.

The XI nt er nAt ons function returns the atom identifiers associated with the speci-
fied names. The atoms are stored in the atoms return array supplied by the caller.
Calling this function is equivalent to calling Xl nt er nAt omfor each of the names in
turn with the specified value of only if exists, but this function minimizes the num-
ber of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names;
otherwise, it returns zero.

Xl nt er nAt orrs can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGet At oniNane.

char *XGet At omNanme(*di splay, atom;

display Specifies the connection to the X server.
atom Specifies the atom for the property name you want re-
turned.

The XGet At omNane function returns the name associated with the specified atom. If
the data returned by the serverisin the Latin Portable Character Encoding, then the
returned string is in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. To free the resulting string, call XFr ee.

XCGet At omNare can generate a BadAtom error.
To return the names for an array of atom identifiers, use XGet At omNanes.
St at us XCGet At omNanes(*di splay, *atonms, count, **panes_return);

display Specifies the connection to the X server.

58

Window Informa-
tion Functions

atoms Specifies the array of atoms.
count Specifies the number of (Cn.
names_return Returns the atom names.

The XGet At omNanes function returns the names associated with the specified atoms.
The names are stored in the names return array supplied by the caller. Calling this
function is equivalent to calling XGet At onNane for each of the atoms in turn, but
this function minimizes the number of round-trip protocol exchanges between the
client and the X server.

This function returns a nonzero status if names are returned for all of the atoms;
otherwise, it returns zero.

XGet At omNaes can generate a BadAtom error.

Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type,
and a value (see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quanti-
ties, whose interpretation is left to the clients. The type char is used to represent
8-bit quantities, the type short is used to represent 16-bit quantities, and the type
long is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange
window properties. In addition, Xlib provides other utility functions for inter-client
communication (see chapter 14).

To obtain the type, format, and value of a property of a given window, use XGet W n-

dowPr operty.

int XGet W ndowProperty(display, w, property, | ong_of f set,
| ong_I engt h, del et e, req_type, actual type_return,
actual _format _return, nitems_return, bytes_after _return,

prop_return);

display Specifies the connection to the X server.

w Specifies the window (Wi.

property Specifies the property name.

long offset Specifies the offset in the specified property (in 32-

bit quantities) where the data is to be retrieved.

long length Specifies the length in 32-bit multiples of the data to
be retrieved.

delete Specifies a Boolean value that determines whether
the property is deleted.

req type Specifies the atom identifier associated with the
property type or AnyPropertyType.

59

Window Informa-
tion Functions

actual type return Returns the atom identifier that defines the actual
type of the property.

actual format return Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit
items stored in the prop return data.

bytes after return Returns the number of bytes remaining to be read in
the property if a partial read was performed.

prop return Returns the data in the specified format.

The XGet W ndowPr oper t y function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the
number of bytes remaining to be read in the property; and a pointer to the data
actually returned. XGet W ndowPr operty sets the return arguments as follows:

» If the specified property does not exist for the specified window, XGet W n-
dowProperty returns None to actual type return and the value zero to
actual format return and bytes after return. The nitems return argument is
empty. In this case, the delete argument is ignored.

« If the specified property exists but its type does not match the specified type,
XGet W ndowPr oper t y returns the actual property type to actual type return, the
actual property format (never zero) to actual format return, and the property
length in bytes (even if the actual format returnis 16 or 32) to bytes after return.
It also ignores the delete argument. The 1 nitems return argument is empty.

« If the specified property exists and either you assign AnyPropertyType to the
req type argument or the specified type matches the actual property type,
XGet W ndowPr opert y returns the actual property type to actual type return and
the actual property format (never zero) to actual format return. It also returns a
value to bytes after return and nitems return, by defining the following values:

¢ N = actual length of the stored property in bytes (even if the format is 16 or 32)
I =4*long offset T =N -1L = MINIMUM(T, 4 *long length) A=N-(I+ L)

* The returned value starts at byte index I in the property (indexing from zero),
and its length in bytes is L. If the value for long offset causes L to be negative,
a BadValue error results. The value of bytes after return is A, giving the number
of trailing unread bytes in the stored property.

If the returned format is 8, the returned data is represented as a char array. If the
returned format is 16, the returned data is represented as a short array and should
be cast to that type to obtain the elements. If the returned format is 32, the returned
data is represented as a long array and should be cast to that type to obtain the
elements.

XGet W ndowPr operty always allocates one extra byte in prop return (even if the
property is zero length) and sets it to zero so that simple properties consisting of
characters do not have to be copied into yet another string before use.

If delete is True and bytes after return is zero, XGet W ndowPr operty deletes the
property from the window and generates a PropertyNotify event on the window.

60

Window Informa-
tion Functions

The function returns Success if it executes successfully. To free the resulting data,
use XFr ee.

XGet W ndowPr oper ty can generate BadAtom, BadValue, and BadWindow errors.
To obtain a given window's property list, use XLi st Properti es.

At om *XLi st Properties(*display, w *numprop_return);

display Specifies the connection to the X server.
w Specifies the window (Wi.
num_prop_return Returns the length of the properties array.

The XLi st Properti es function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found.
To free the memory allocated by this function, use XFr ee.

XLi st Properties can generate a BadWindow error.
To change a property of a given window, use XChangePr operty.

XChangeProperty(*display, w, type, format, node, *data, nelenents);

display Specifies the connection to the X server.

w Specifies the window (Wi.

property Specifies the property name.

type Specifies the type of the property. The X server does not

interpret the type but simply passes it back to an appli-
cation that later calls XGet W ndowPr operty.

format Specifies whether the data should be viewed as a list of 8-
bit, 16-bit, or 32-bit quantities. Possible values are 8, 16,
and 32. This information allows the X server to correct-
ly perform byte-swap operations as necessary. If the for-
mat is 16-bit or 32-bit, you must explicitly cast your data
pointer to an (unsigned char *) in the call to XChange-
Property.

mode Specifies the mode of the operation. You can pass Prop-
ModeReplace, PropModePrepend, or PropModeAppend.

data Specifies the property data.
nelements Specifies the number of elements of the specified data
format.

The XChangeProperty function alters the property for the specified window and
causes the X server to generate a PropertyNotify event on that window. XChange-
Property performs the following:

* If mode is PropModeReplace, XChangePr operty discards the previous property
value and stores the new data.

61

Window Informa-
tion Functions

* If mode is PropModePrepend or PropModeAppend, XChangePr operty inserts the
specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

If the specified format is 8, the property data must be a char array. If the specified
format is 16, the property data must be a short array. If the specified format is 32,
the property data must be a long array.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until the server resets. For a
discussion of what happens when the connection to the X server is closed, see sec-
tion 2.6. The maximum size of a property is server dependent and can vary dynam-
ically depending on the amount of memory the server has available. (If there is in-
sufficient space, a BadAlloc error results.)

XChangePr operty can generate BadAlloc, BadAtom, BadMatch, BadValue, and Bad-
Window errors.

To rotate a window's property list, use XRot at eW ndowPr operti es.

XRot at eW ndowPr operties(*display, w, properties[], numprop, npo-
sitions);

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRot at eW ndowPr operti es function allows you to rotate properties on a win-
dow and causes the X server to generate PropertyNotify events. If the property
names in the properties array are viewed as being numbered starting from zero and
if there are num prop property names in the list, then the value associated with
property name I becomes the value associated with property name (I + npositions)
mod N for all I from zero to N — 1. The effect is to rotate the states by npositions
places around the virtual ring of property names (right for positive npositions, left
for negative npositions). If npositions mod N is nonzero, the X server generates a
PropertyNotify event for each property in the order that they are listed in the array.
If an atom occurs more than once in the list or no property with that name is defined
for the window, a BadMatch error results. If a BadAtom or BadMatch error results,
no properties are changed.

XRot at eW ndowPr oper ti es can generate BadAtom, BadMatch, and BadWindow er-
rorTs.

To delete a property on a given window, use XDel et ePr operty.

XDel et eProperty(*display, w, property);

62

Window Informa-
tion Functions

display Specifies the connection to the X server.
w Specifies the window (Wi.
property Specifies the property name.

The XDel et eProperty function deletes the specified property only if the property
was defined on the specified window and causes the X server to generate a Proper-
tyNotify event on the window unless the property does not exist.

XDel et eProperty can generate BadAtom and BadWindow errors.

Selections

Selections are one method used by applications to exchange data. By using the
property mechanism, applications can exchange data of arbitrary types and can
negotiate the type of the data. A selection can be thought of as an indirect property
with a dynamic type. That is, rather than having the property stored in the X server,
the property is maintained by some client (the owner). A selection is global in nature
(considered to belong to the user but be maintained by clients) rather than being
private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selec-
tions. This allows applications to implement the notion of current selection, which
requires that notification be sent to applications when they no longer own the se-
lection. Applications that support selection often highlight the current selection and
so must be informed when another application has acquired the selection so that
they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target
type. This target type can be used to control the transmitted representation of the
contents. For example, if the selection is " the last thing the user clicked on'" and
that is currently an image, then the target type might specify whether the contents
of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for
example, asking for the " “looks" (fonts, line spacing, indentation, and so forth) of a
paragraph selection, not the text of the paragraph. The target type can also be used
for other purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSet Sel ecti onOaner .

XSet Sel ecti onOwner (*di splay, selection, owner, tine);

display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You

can pass a window or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSet Sel ecti onOawner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current

63

Window Informa-
tion Functions

last-change time of the specified selection or is later than the current X server time.
Otherwise, the last-change time is set to the specified time, with CurrentTime re-
placed by the current server time. If the owner window is specified as None, then
the owner of the selection becomes None (that is, no owner). Otherwise, the owner
of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner
of the selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the
request is later destroyed, the owner of the selection automatically reverts to None,
but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGet Sel ecti onOamner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X server.

XSet Sel ecti onOmner can generate BadAtom and BadWindow errors.
To return the selection owner, use XGet Sel ecti onOaner .

W ndow XGet Sel ecti onOwner (*di splay, selection);

display Specifies the connection to the X server.
selection Specifies the selection atom (Se.

The XGet Sel ecti onOwner function returns the window ID associated with the win-
dow that currently owns the specified selection. If no selection was specified, the
function returns the constant None. If None is returned, there is no owner for the
selection.

XCGet Sel ecti onOamner can generate a BadAtom error.
To request conversion of a selection, use XConvert Sel ecti on.

XConvert Sel ection(*display, target, property, requestor, tine);

display Specifies the connection to the X server.

selection Specifies the selection atom.

target Specifies the target atom.

property Specifies the property name. You also can pass None.

requestor Specifies the requestor.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

XConvert Sel ecti on requests that the specified selection be converted to the spec-
ified target type:

e If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

* If no owner for the specified selection exists, the X server generates a Selection-
Notify event to the requestor with property None.

64

Window Informa-
tion Functions

The arguments are passed on unchanged in either of the events. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvert Sel ecti on can generate BadAtom and BadWindow errors.

65

Chapter 5. Pixmap and Cursor
Functions

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are
off-screen resources that are used for various operations, such as defining cursors
as tiling patterns or as the source for certain raster operations. Most graphics re-
quests can operate either on a window or on a pixmap. A bitmap is a single bit-
plane pixmap.

To create a pixmap of a given size, use XCr eat ePi xnmap.

Pi xmap XCreat ePi xmap(*di splay, d, height, depth);

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.
width

height Specify the width and height(Wh.

depth Specifies the depth of the pixmap.

The XCr eat ePi xmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonze-
ro, or a BadValue error results. The depth argument must be one of the depths sup-
ported by the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the
pixmap. The pixmap can be used only on this screen and only with other drawables
of the same depth (see XCopyPl ane for an exception to this rule). The initial contents
of the pixmap are undefined.

XCr eat ePi xmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFr eePi xnap.

XFreePi xmap(*display, pixmap);

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

The XFr eePi xmap function first deletes the association between the pixmap ID and
the pixmap. Then, the X server frees the pixmap storage when there are no refer-

ences to it. The pixmap should never be referenced again.

XFr eePi xmap can generate a BadPixmap error.

66

Pixmap and Cursor Functions

Creating, Recoloring, and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in
a visible window, it is set to the cursor defined for that window. If no cursor was
defined for that window, the cursor is the one defined for the parent window.

From X's perspective, a cursor consists of a cursor source, mask, colors, and a
hotspot. The mask pixmap determines the shape of the cursor and must be a depth
of one. The source pixmap must have a depth of one, and the colors determine the
colors of the source. The hotspot defines the point on the cursor that is reported
when a pointer event occurs. There may be limitations imposed by the hardware
on cursors as to size and whether a mask is implemented. XQuer yBest Cur sor can
be used to find out what sizes are possible. There is a standard font for creating
cursors, but Xlib provides functions that you can use to create cursors from an ar-
bitrary font or from bitmaps.

To create a cursor from the standard cursor font, use XCr eat eFont Cur sor .
#include <X11/cursorfont.h>

Cur sor XCreat eFont Cursor(*display, shape);

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applica-
tions are encouraged to use this interface for their cursors because the font can
be customized for the individual display type. The shape argument specifies which
glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors
of a cursor are a black foreground and a white background (see XRecol or Cur sor).
For further information about cursor shapes, see appendix B.

XCr eat eFont Cur sor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCr eat ed yphCur sor.

Cur sor XCr eat ed yphCur sor (*di spl ay, mask_font, mask_char,

*foreground_col or, *background_col or);

display Specifies the connection to the X server.

source font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.

source char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

67

Pixmap and Cursor Functions

The XCr eat ed yphCur sor function is similar to XCr eat ePi xmapCur sor except that
the source and mask bitmaps are obtained from the specified font glyphs. The
source char must be a defined glyph in source font, or a BadValue error results.
If mask font is given, mask char must be a defined glyph in mask font, or a Bad-
Value error results. The mask font and character are optional. The origins of the
source char and mask char (if defined) glyphs are positioned coincidently and de-
fine the hotspot. The source char and mask char need not have the same bounding
box metrics, and there is no restriction on the placement of the hotspot relative to
the bounding boxes. If no mask char is given, all pixels of the source are displayed.
You can free the fonts immediately by calling XFr eeFont if no further explicit refer-
ences to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member
in the most significant byte and the byte2 member in the least significant byte.

XCr eat ed yphCur sor can generate BadAlloc, BadFont, and BadValue errors.
To create a cursor from two bitmaps, use XCr eat ePi xmapCur sor .

Cur sor XCr eat ePi xmapCur sor (*di spl ay, source, mask,
*foreground_col or, *background color, vy);

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor's source bits to be displayed or
None.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

X

v Specify the x and y coordinates(Xy.

The XCr eat ePi xmapCur sor function creates a cursor and returns the cursor ID as-
sociated with it. The foreground and background RGB values must be specified us-
ing foreground color and background color, even if the X server only has a Stat-
icGray or GrayScale screen. The foreground color is used for the pixels set to 1 in
the source, and the background color is used for the pixels set to 0. Both source
and mask, if specified, must have depth one (or a BadMatch error results) but can
have any root. The mask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to 0
define which pixels are ignored. If no mask is given, all pixels of the source are
displayed. The mask, if present, must be the same size as the pixmap defined by the
source argument, or a BadMatch error results. The hotspot must be a point within
the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limi-
tations. The pixmaps can be freed immediately if no further explicit references to
them are to be made. Subsequent drawing in the source or mask pixmap has an
undefined effect on the cursor. The X server might or might not make a copy of the
pixmap.

68

Pixmap and Cursor Functions

XCr eat ePi xmapCur sor can generate BadAlloc and BadPixmap errors.
To determine useful cursor sizes, use XQuer yBest Cur sor.

St at us XQueryBest Cursor(*display, d, height, *height_return);

display Specifies the connection to the X server.
d Specifies the drawable(Dr.

width

height Specify the width and height(Wh.

width_return

height return Return the best width and height that is closest to
the specified width and height.

Some displays allow larger cursors than other displays. The XQueryBest Cur sor
function provides a way to find out what size cursors are actually possible on the
display. It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQuer yBest Cur sor can generate a BadDrawable error.
To change the color of a given cursor, use XRecol or Cur sor .

XRecol or Cursor(*di splay, cursor, *background color);

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

The XRecol or Cur sor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately. The pixel
members of the XColor structures are ignored; only the RGB values are used.

XRecol or Cur sor can generate a BadCursor error.

To free (destroy) a given cursor, use XFr eeCur sor .

XFreeCursor(*di splay, cursor);

display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFr eeCur sor function deletes the association between the cursor resource ID
and the specified cursor. The cursor storage is freed when no other resource refer-
ences it. The specified cursor ID should not be referred to again.

69

Pixmap and Cursor Functions

XFr eeCur sor can generate a BadCursor error.

70

Chapter 6. Color Management
Functions

Each X window always has an associated colormap that provides a level of indirec-
tion between pixel values and colors displayed on the screen. Xlib provides func-
tions that you can use to manipulate a colormap. The X protocol defines colors using
values in the RGB color space. The RGB color space is device dependent; rendering
an RGB value on differing output devices typically results in different colors. Xlib
also provides a means for clients to specify color using device-independent color
spaces for consistent results across devices. Xlib supports device-independent col-
or spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v¥, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

* Create, copy, and destroy a colormap
* Specify colors by name or value

» Allocate, modify, and free color cells
* Read entries in a colormap

e Convert between color spaces

* Control aspects of color conversion

* Query the color gamut of a screen

¢ Add new color spaces

All functions, types, and symbols in this chapter with the prefix " Xcms" are defined
in <X11/ Xcns. h>. The remaining functions and types are defined in <X11/ Xl i b. h>.

Functions in this chapter manipulate the representation of color on the screen. For
each possible value that a pixel can take in a window, there is a color cell in the
colormap. For example, if a window is 4 bits deep, pixel values 0 through 15 are
defined. A colormap is a collection of color cells. A color cell consists of a triple
of red, green, and blue (RGB) values. The hardware imposes limits on the number
of significant bits in these values. As each pixel is read out of display memory, the
pixel is looked up in a colormap. The RGB value of the cell determines what color
is displayed on the screen. On a grayscale display with a black-and-white monitor,
the values are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the de-
sired colors. The client can allocate read-only cells. In which case, the pixel values
for these colors can be shared among multiple applications, and the RGB value of
the cell cannot be changed. If the client allocates read/write cells, they are exclu-
sively owned by the client, and the color associated with the pixel value can be
changed at will. Cells must be allocated (and, if read/write, initialized with an RGB
value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

71

Color Management Functions

Because colormaps are associated with windows, X supports displays with multiple
colormaps and, indeed, different types of colormaps. If there are insufficient col-
ormap resources in the display, some windows will display in their true colors, and
others will display with incorrect colors. A window manager usually controls which
windows are displayed in their true colors if more than one colormap is required for
the color resources the applications are using. At any time, there is a set of installed
colormaps for a screen. Windows using one of the installed colormaps display with
true colors, and windows using other colormaps generally display with incorrect
colors. You can control the set of installed colormaps by using XI nst al | Col or map
and XUni nst al | Col or map.

Colormaps are local to a particular screen. Screens always have a default colormap,
and programs typically allocate cells out of this colormap. Generally, you should
not write applications that monopolize color resources. Although some hardware
supports multiple colormaps installed at one time, many of the hardware displays
built today support only a single installed colormap, so the primitives are written to
encourage sharing of colormap entries between applications.

The Def aul t Col or map macro returns the default colormap. The Def aul t Vi sual
macro returns the default visual type for the specified screen. Possible visual types
are StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see
section 3.1).

Color Structures

Functions that operate only on RGB color space values use an XColor structure,
which contains:

typedef struct {
unsi gned | ong pixel; /* pixel value */
unsi gned short red, green, blue; /* rgb val ues */
char flags; /* DoRed, DoG een, DoBlue */
char pad;
} XCol or;

The red, green, and blue values are always in the range 0 to 65535 inclusive, inde-
pendent of the number of bits actually used in the display hardware. The server
scales these values down to the range used by the hardware. Black is represented
by (0,0,0), and white is represented by (65535,65535,65535). In some functions,
the flags member controls which of the red, green, and blue members is used and
can be the inclusive OR of zero or more of DoRed, DoGreen, and DoBlue.

Functions that operate on all color space values use an XcmsColor structure. This
structure contains a union of substructures, each supporting color specification en-
coding for a particular color space. Like the XColor structure, the XcmsColor struc-
ture contains pixel and color specification information (the spec member in the Xcm-
sColor structure).

72

Color Management Functions

t ypedef unsi gned | ong XcnsCol or For mat ; /* Col or Specification Fornat

typedef struct {
uni on {
XcmsRGB RGB;
XcnmsR@BI RGBI ;
XcnsCl EXYZ Cl EXYZ;
XcmsCl EuvY Cl EuvY;
XcmsCl ExyY Cl ExyY;
XcnsCl ELab Cl ELab;
XcmsCl ELuv Cl ELuv;
Xcns TekHVC TekHVC,
XcnsPad Pad;
} spec;
unsi gned | ong pi xel ;
XcnsCol or For mat f or mat ;
} XcnsCol or; /* Xcms Col or Structure */

Because the color specification can be encoded for the various color spaces, encod-
ing for the spec member is identified by the format member, which is of type Xcm-
sColorFormat. The following macros define standard formats.

#def i ne XcnsUnde#nedFor mat 0x00000000

#def i ne Xcns Cl EXYZFor mat 0x00000001 /* CIE XYZ */

#def i ne Xcns Cl EuvYFor mat 0x00000002 /* CIE u'v'Y */
#def i ne XcnsCl Exy YFor mat 0x00000003 /* CIE xyY */

#def i ne XcnsCl ELabFor mat 0x00000004 /* CIE L*a*b* */
#def i ne XcnsCl ELuvFor mat 0x00000005 /* CIE L*u*v* */
#def i ne Xcns Tek HVCFor mat 0x00000006 /* TekHVC */

#def i ne Xcns RGFor mat 0x80000000 /* RGB Device */
#def i ne XcmsRGBI For mat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for de-
vice-dependent spaces by the 32nd bit. If this bit is set, it indicates that the color
specification is in a device-dependent form; otherwise, it is in a device-independent
form. If the 31st bit is set, this indicates that the color space has been added to
Xlib at run time (see section 6.12.4). The format value for a color space added at
run time may be different each time the program is executed. If references to such
a color space must be made outside the client (for example, storing a color speci-
fication in a file), then reference should be made by color space string prefix (see
XcnsFor mat O Pref i x and XcnsPr ef i xOF For mat).

Data types that describe the color specification encoding for the various color
spaces are defined as follows:

t ypedef doubl e XcnsFl oat ;

typedef struct {
unsi gned short red; /* 0x0000 to Oxffff */

73

*/

Color Management Functions

unsi gned short green; /* 0x0000 to Oxffff */
unsi gned short blue; /* 0x0000 to Oxffff */
} XcnmsRGB; [/* RGB Device */

typedef struct {

XcnsFloat red; /* 0.0 to 1.0 */
XcmsFl oat green; /* 0.0 to 1.0 */
XcnsFl oat blue; /* 0.0 to 1.0 */
} XcmsRGBi; /* REB Intensity */

typedef struct {

XcnsFl oat X;

XcnsFloat Y; /* 0.0 to 1.0 */
XcnsFl oat Z;

} XcmsCl EXYZ; [* CIE XYZ */

typedef struct {

XcmsFl oat u_prime; /* 0.0 to ~0.6 */
XcmsFloat v_prime; /* 0.0 to ~0.6 */
XcnsFloat Y; /* 0.0 to 1.0 */

} XcnsCl EuvY; [/* CIE U V'Y */

typedef struct {

XcmsFloat x; /* 0.0 to ~. 75 */
XcmsFloat y; /* 0.0 to ~.85 */
XcmsFloat Y; /* 0.0 to 1.0 */
} XcnsCl ExyY; [* CIE xyY */

typedef struct {
XcnmsFloat L_star; /* 0.0 to 100.0 */

74

Color Management Functions

XcnsFl oat a_star;
XcnsFl oat b_star;
} XcnsCl ELab; /* CIE L*a*b* */

typedef struct {

XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFl oat u_star;

XcmsFl oat v_star;

} XcnsCl ELuv; [/* CIE L*u*v* */

typedef struct {

XcmsFloat H /* 0.0 to 360.0 */
XcmsFloat V; /* 0.0 to 100.0 */
XcmsFloat C; /* 0.0 to 100.0 */
} XcnsTekHVC, [* TekHVC */

typedef struct {
XcmsFl oat pado;
XcmsFl oat padil;
XcmsFl oat pad?;
XcmsFl oat pad3;
} XcnmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:
* RGB Intensity (XcmsRGBi)

* Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0,
where 1.0 indicates full intensity, 0.5 half intensity, and so on.

¢ RGB Device (XcmsRGB)

* Red, green, and blue values appropriate for the specified output device. XcmsRGB
values are of type unsigned short, scaled from 0 to 65535 inclusive, and are in-
terchangeable with the red, green, and blue values in an XColor structure.

It is important to note that RGB Intensity values are not gamma corrected values.
In contrast, RGB Device values generated as a result of converting color specifica-
tions are always gamma corrected, and RGB Device values acquired as a result of
querying a colormap or passed in by the client are assumed by Xlib to be gamma
corrected. The term RGB value in this manual always refers to an RGB Device value.

75

Color Management Functions

Color Strings

Xlib provides a mechanism for using string names for colors. A color string may ei-
ther contain an abstract color name or a numerical color specification. Color strings
are case-insensitive.

Color strings are used in the following functions:

e XAl | ocNamedCol or

* XcnsAl | ocNamedCol or

* XLookupCol or

e XcnsLookupCol or

XPar seCol or
* XSt or eNanedCol or

Xlib supports the use of abstract color names, for example, red or blue. A value
for this abstract name is obtained by searching one or more color name databases.
Xlib first searches zero or more client-side databases; the number, location, and
content of these databases is implementation-dependent and might depend on the
current locale. If the name is not found, Xlib then looks for the color in the X server's
database. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values
in the following syntax:

<col or _space_nane>: <val ue>/ .../ <val ue>

The following are examples of valid color strings.

"Cl EXYZ: 0. 3227/ 0. 28133/ 0. 2493"

"RGBi : 1.0/ 0.0/0.0"

"rgh: 00/ ff/00"

"Cl ELuv: 50. 0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard
color space in the following sections.

RGB Device String Specification

An RGB Device specification is identified by the prefix " "rgb:'" and conforms to the
following syntax:

rgb: <red>/ <gr een>/ <bl ue>

<red>, <green>, <blue> := h | hh | hhh | hhhh

76

Color Management Functions

h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh
the value scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are the strings " "rgb:ea/75/52" and " "rgb:ccc/320/320", but mixed
numbers of hexadecimal digit strings (" "rgb:ff/a5/0" and " rgb:ccc/32/0") are also
allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its
continued use is not encouraged. The syntax is an initial sharp sign character fol-
lowed by a numeric specification, in one of the following formats:

#RGB (4 bits each)

#RRGGBB (8 bhits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGEBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each
are specified, they represent the most significant bits of the value (unlike the " “rgb:"
syntax, in which values are scaled). For example, the string "~ #3a7" is the same
as = #3000a0007000".

RGB Intensity String Specification

An RGB intensity specification is identified by the prefix " rgbi:" and conforms to
the following syntax:

r gbi : <red>/ <gr een>/ <bl ue>

Note that red, green, and blue are floating-point values between 0.0 and 1.0, inclu-
sive. The input format for these values is an optional sign, a string of numbers pos-
sibly containing a decimal point, and an optional exponent field containing an E or
e followed by a possibly signed integer string.

Device-Independent String Specifications

The standard device-independent string specifications have the following syntax:

Cl EXYZ: <X>/ <Y>/ <Z>
Cl EuvY: <u>/ <v>/ <Y>
Cl ExyY: <x>/ <y>/ <Y>
Cl ELab: <L>/ <a>/
Cl ELuv: <L>/ <u>/ <v>
TekHVC. <H>/ <V>/ <C

All ofthevalues (C,H,V, X, Y, Z, a, b, u, v, y, X) are floating-point values. The syntax for
these values is an optional plus or minus sign, a string of digits possibly containing a
decimal point, and an optional exponent field consisting of an " "E" or " "e" followed
by an optional plus or minus followed by a string of digits.

77

Color Management Functions

Color Conversion Contexts and Gamut Map-
ping

When Xlib converts device-independent color specifications into device-dependent
specifications and vice versa, it uses knowledge about the color limitations of the
screen hardware. This information, typically called the device profile, is available
in a Color Conversion Context (CCC).

Because a specified color may be outside the color gamut of the target screen and
the white point associated with the color specification may differ from the white
point inherent to the screen, Xlib applies gamut mapping when it encounters certain
conditions:

* Gamut compression occurs when conversion of device-independent color specifi-
cations to device-dependent color specifications results in a color out of the target
screen's gamut.

¢ White adjustment occurs when the inherent white point of the screen differs from
the white point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used
by the color space conversion routines. Client data is also stored in the CCC for each
callback. The CCC also contains the white point the client assumes to be associated
with color specifications (that is, the Client White Point). The client can specify
the gamut handling callbacks and client data as well as the Client White Point. Xlib
does not preclude the X client from performing other forms of gamut handling (for
example, gamut expansion); however, Xlib does not provide direct support for gamut
handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated by Xlib.
Therefore, when you specify a colormap as an argument to an Xlib function, you are
indirectly specifying a CCC. There is a default CCC associated with each screen.
Newly created CCCs inherit attributes from the default CCC, so the default CCC
attributes can be modified to affect new CCCs.

Xcms functions in which gamut mapping can occur return Status and have specific
status values defined for them, as follows:

¢ XcmsFailure indicates that the function failed.

» XcmsSuccess indicates that the function succeeded. In addition, if the function
performed any color conversion, the colors did not need to be compressed.

* XcmsSuccessWithCompression indicates the function performed color conversion
and at least one of the colors needed to be compressed. The gamut compression
method is determined by the gamut compression procedure in the CCC that is
specified directly as a function argument or in the CCC indirectly specified by
means of the colormap argument.

Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCr eat eCol or map.

78

Color Management Functions

Col ormap XCreateCol ormap(*display, w *visual, alloc);

display Specifies the connection to the X server.

w Specifies the window (Wi.

visual Specifies a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error
results.

alloc Specifies the colormap entries to be allocated. You can pass

AllocNone or AllocAll.

The XCr eat eCol or map function creates a colormap of the specified visual type for
the screen on which the specified window resides and returns the colormap ID asso-
ciated with it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayS-
cale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the
entries have defined values, but those values are specific to the visual and are not
defined by X. For StaticGray, StaticColor, and TrueColor, alloc must be AllocNone,
or a BadMatch error results. For the other visual classes, if alloc is AllocNone, the
colormap initially has no allocated entries, and clients can allocate them. For infor-
mation about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of
all allocated entries are undefined. For GrayScale and PseudoColor, the effect is
as if an XAl | ocCol or Cel | s call returned all pixel values from zero to N - 1, where
N is the colormap entries value in the specified visual. For DirectColor, the effect
is as if an XAl | ocCol or Pl anes call returned a pixel value of zero and red mask,
green_mask, and blue mask values containing the same bits as the corresponding
masks in the specified visual. However, in all cases, none of these entries can be
freed by using XFr eeCol or s.

XCr eat eCol or nap can generate BadAlloc, BadMatch, BadValue, and BadWindow er-
rors.

To create a new colormap when the allocation out of a previously shared colormap
has failed because of resource exhaustion, use XCopyCol or mapAndFr ee.

Col or map XCopyCol or mapAndFree(*di splay, col ormap);
display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyCol or mapAndFr ee function creates a colormap of the same visual type
and for the same screen as the specified colormap and returns the new colormap
ID. It also moves all of the client's existing allocation from the specified colormap
to the new colormap with their color values intact and their read-only or writable
characteristics intact and frees those entries in the specified colormap. Color values
in other entries in the new colormap are undefined. If the specified colormap was
created by the client with alloc set to AllocAll, the new colormap is also created
with AllocAll, all color values for all entries are copied from the specified colormap,
and then all entries in the specified colormap are freed. If the specified colormap
was not created by the client with AllocAll, the allocations to be moved are all those

79

Color Management Functions

pixels and planes that have been allocated by the client using XAl | ocCol or, XAl -
| ocNanedCol or, XAl | ocCol or Cel I s, or XAl | ocCol or Pl anes and that have not been
freed since they were allocated.

XCopyCol or mapAndFr ee can generate BadAlloc and BadColor errors.
To destroy a colormap, use XFr eeCol or map.

XFreeCol ormap(*di splay, colormap);

display Specifies the connection to the X server.
colormap Specifies the colormap (Cm.

The XFr eeCol or map function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has no
effect on the default colormap for a screen. If the specified colormap is an installed
map for a screen, it is uninstalled (see XUni nst al | Col or map). If the specified col-
ormap is defined as the colormap for a window (by XCr eat eW ndow, XSet W ndowCol -
or map, or XChangeW ndowAt t ri but es), XFr eeCol or map changes the colormap asso-
ciated with the window to None and generates a ColormapNotify event. X does not
define the colors displayed for a window with a colormap of None.

XFr eeCol or map can generate a BadColor error.

Mapping Color Names to Values

To map a color name to an RGB value, use XLookupCol or.

St at us XLookupCaol or (*di spl ay, col or map, *col or _nane,
*screen_def _return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color name Specifies the color name string (for example, red)

whose color definition structure you want returned.

exact def return Returns the exact RGB values.
screen_def return Returns the closest RGB values provided by the hard-
ware.

The XLookupCol or function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color val-
ues and the closest values provided by the screen with respect to the visual type
of the specified colormap. If the color name is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase
does not matter. XLookupCol or returns nonzero if the name is resolved; otherwise,
it returns zero.

XLookupCol or can generate a BadColor error.
To map a color name to the exact RGB value, use XPar seCol or .

St at us XParseCol or (*di splay, colormap, *spec, *exact_def_return);

80

Color Management Functions

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.
exact _def return Returns the exact color value for later use and sets

the DoRed, DoGreen, and DoBlue flags.

The XPar seCol or function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns the exact color value. If
the color name is not in the Host Portable Character Encoding, the result is imple-
mentation-dependent. Use of uppercase or lowercase does not matter. XPar seCol or
returns nonzero if the name is resolved; otherwise, it returns zero.

XPar seCol or can generate a BadColor error.
To map a color name to a value in an arbitrary color space, use XcnsLookupCol or .

Status XcnsLookupCol or (*di spl ay, col or map, *col or_string,
*col or_screen_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color string Specifies the color string(St.

color _exact return Returns the color specification parsed from the color

string or parsed from the corresponding string found
in a color-name database.

color _screen_return Returns the color that can be reproduced on the
screen.
result format Specifies the color format for the returned

color specifications (color screen return and
color exact return arguments). If the format is Xcm-
sUndefinedFormat and the color string contains a
numerical color specification, the specification is re-
turned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the spec-
ification is returned in the format used to store the
color in the database.

The XcnsLookupCol or function looks up the string name of a color with respect
to the screen associated with the specified colormap. It returns both the exact col-
or values and the closest values provided by the screen with respect to the visual
type of the specified colormap. The values are returned in the format specified by
result format. If the color name is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does not
matter. XcnmsLookupCol or returns XcmsSuccess or XcmsSuccessWithCompression
if the name is resolved; otherwise, it returns XcmsFailure. If XcmsSuccessWithCom-
pression is returned, the color specification returned in color screen return is the
result of gamut compression.

81

Color Management Functions

Allocating and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries, one
pixel value at a time, or read/write, where you can allocate a number of color cells
and planes simultaneously. A read-only cell has its RGB value set by the server.
Read/write cells do not have defined colors initially; functions described in the next
section must be used to store values into them. Although it is possible for any client
to store values into a read/write cell allocated by another client, read/write cells
normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each alloca-
tion and freeing of the cell by clients. When the last client frees a shared cell, the
cell is finally deallocated. If a single client allocates the same read-only cell multiple
times, the server counts each such allocation, not just the first one.

To allocate a read-only color cell with an RGB value, use XAl | ocCol or .

Status XAl |l ocCol or(*display, colormap, *screen_in_out);

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the
colormap.

The XAl | ocCol or function allocates a read-only colormap entry corresponding to
the closest RGB value supported by the hardware. XAl | ocCol or returns the pixel
value of the color closest to the specified RGB elements supported by the hardware
and returns the RGB value actually used. The corresponding colormap cell is read-
only. In addition, XAl | ocCol or returns nonzero if it succeeded or zero if it failed.
Multiple clients that request the same effective RGB value can be assigned the same
read-only entry, thus allowing entries to be shared. When the last client deallocates
a shared cell, it is deallocated. XAl | ocCol or does not use or affect the flags in the
XColor structure.

XAl | ocCol or can generate a BadColor error. delim %%

To allocate a read-only color cell with a color in arbitrary format, use XcnsAl | oc-
Col or.

Status XcnsAl | ocCol or (*di spl ay, col or map, *col or _i n_out,
result_format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color in out Specifies the color to allocate and returns the pixel

and color that is actually used in the colormap.

result format Specifies the color format for the returned color
specification.

The XcnsAl | ocCol or function is similar to XAl | ocCol or except the color can be
specified in any format. The XcnsAl | ocCol or function ultimately calls XAl | ocCol or

82

Color Management Functions

to allocate a read-only color cell (colormap entry) with the specified color. XcnsAl -
| ocCol or first converts the color specified to an RGB value and then passes this
to XAl | ocCol or. XcnsAl | ocCol or returns the pixel value of the color cell and the
color specification actually allocated. This returned color specification is the result
of converting the RGB value returned by XAl | ocCol or into the format specified with
the result format argument. If there is no interest in a returned color specification,
unnecessary computation can be bypassed if result format is set to XcmsRGBFor-
mat. The corresponding colormap cell is read-only. If this routine returns XcmsFail-
ure, the color in out color specification is left unchanged.

XcnsAl | ocCol or can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in RGB format, use XAl | ocNanedCol or .

Status XAl | ocNanedCol or (*di spl ay, col or map, *col or _nane,
*exact _def _return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color name Specifies the color name string (for example, red)

whose color definition structure you want returned.

screen_def return Returns the closest RGB values provided by the hard-
ware.
exact _def return Returns the exact RGB values.

The XAl | ocNanmedCol or function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database
definition and the closest color supported by the screen. The allocated color cell
is read-only. The pixel value is returned in screen def return. If the color name
is not in the Host Portable Character Encoding, the result is implementation-de-
pendent. Use of uppercase or lowercase does not matter. If screen def return and
exact def return point to the same structure, the pixel field will be set correctly,
but the color values are undefined. XAl | ocNamedCol or returns nonzero if a cell is
allocated; otherwise, it returns zero.

XAl | ocNanmedCol or can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in an arbitrary format, use XcnsAl | ocNanedCol or .

Status XcnsAl |l ocNanmedCol or (*di spl ay, col or map, *col or_string,
*col or_screen_return, *color_exact_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color string Specifies the color string(St.

color screen return Returns the pixel value of the color cell and color

specification that actually is stored for that cell.

83

Color Management Functions

color _exact return Returns the color specification parsed from the color
string or parsed from the corresponding string found
in a color-name database.

result format Specifies the color format for the returned
color specifications (color screen return and
color exact return arguments). If the format is Xcm-
sUndefinedFormat and the color string contains a
numerical color specification, the specification is re-
turned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the spec-
ification is returned in the format used to store the
color in the database.

The XcnsAl | ocNanedCol or function is similar to XAl | ocNanedCol or except that the
color returned can be in any format specified. This function ultimately calls XAl -
| ocCol or to allocate a read-only color cell with the color specified by a color string.
The color string is parsed into an XcmsColor structure (see XcnsLookupCol or), con-
verted to an RGB value, and finally passed to XAl | ocCol or . If the color name is not
in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact speci-
fication) and the actual color specification stored (screen specification). This screen
specification is the result of converting the RGB value returned by XAl | ocCol or
into the format specified in result format. If there is no interest in a returned color
specification, unnecessary computation can be bypassed if result format is set to
XcmsRGBFormat. If color screen return and color exact return point to the same
structure, the pixel field will be set correctly, but the color values are undefined.

XcnsAl | ocNamredCol or can generate a BadColor error.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAl | ocCol or Cel | s.

St at us XAl | ocCol or Cel | s(*di spl ay, col or map, contig,
pl ane_masks return[], nplanes, pixels return[], npixels);

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the

planes must be contiguous.
plane _mask_return Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be
returned in the plane masks array.

pixels return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be
returned in the pixels return array.

84

Color Management Functions

The XAl | ocCol or Cel | s function allocates read/write color cells. The number of col-
ors must be positive and the number of planes nonnegative, or a BadValue error
results. If ncolors and nplanes are requested, then ncolors pixels and nplane plane
masks are returned. No mask will have any bits set to 1 in common with any other
mask or with any of the pixels. By ORing together each pixel with zero or more

masks, ncolors x 2"P9"®8 distinct pixels can be produced. All of these are allocated
writable by the request. For GrayScale or PseudoColor, each mask has exactly one
bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is True
and if all masks are ORed together, a single contiguous set of bits set to 1 will be
formed for GrayScale or PseudoColor and three contiguous sets of bits set to 1 (one
within each pixel subfield) for DirectColor. The RGB values of the allocated entries
are undefined. XAl | ocCol or Cel | s returns nonzero if it succeeded or zero if it failed.

XAl | ocCol or Cel | s can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAl | ocCol or -
Pl anes.

St at us XAl | ocCol or Pl anes(*di spl ay, col or map, contig,
pi xel s_return[], ncolors, nblues, *bmask return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the

planes must be contiguous.

pixels return Returns an array of pixel values. XAl | ocCol or Pl anes
returns the pixel values in this array.

ncolors Specifies the number of pixel values that are to be
returned in the pixels return array.

nreds
ngreens

nblues Specify the number of red, green, and blue planes.
The value you pass must be nonnegative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be non-
negative, or a BadValue error results. If ncolors colors, nreds reds, ngreens greens,
and nblues blues are requested, ncolors pixels are returned; and the masks have
nreds, ngreens, and nblues bits set to 1, respectively. If contig is True, each mask
will have a contiguous set of bits set to 1. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. For DirectColor, each mask
will lie within the corresponding pixel subfield. By ORing together subsets of masks

with each pixel value, ncolors x 2(redstngreens+nblues) giciinct pixel values can be
produced. All of these are allocated by the request. However, in the colormap, there

85

Color Management Functions

nreds ngreens

are only ncolors x 2 independent red entries, ncolors x 2 independent

green entries, and ncolors x 2™ independent blue entries. This is true even for
PseudoColor. When the colormap entry of a pixel value is changed (using XSt or e-
Col ors, XSt or eCol or, or XSt or eNanedCol or), the pixel is decomposed according to
the masks, and the corresponding independent entries are updated. XAl | ocCol or -
Pl anes returns nonzero if it succeeded or zero if it failed.

XAl | ocCol or Pl anes can generate BadColor and BadValue errors.
To free colormap cells, use XFr eeCol ors.

XFreeCol ors(*di splay, colormap, pixels[], npixels, planes);

display Specifies the connection to the X server.
colormap Specifies the colormap.

pixels Specifies an array of pixel values (Pi.
npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFr eeCol or s function frees the cells represented by pixels whose values are in
the pixels array. The planes argument should not have any bits set to 1 in common
with any of the pixels. The set of all pixels is produced by ORing together subsets
of the planes argument with the pixels. The request frees all of these pixels that
were allocated by the client (using XAl | ocCol or, XAl | ocNanedCol or, XAl | ocCol -
or Cel | s, and XAl | ocCol or Pl anes). Note that freeing an individual pixel obtained
from XAl | ocCol or Pl anes may not actually allow it to be reused until all of its relat-
ed pixels are also freed. Similarly, a read-only entry is not actually freed until it has
been freed by all clients, and if a client allocates the same read-only entry multiple
times, it must free the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even
if one or more pixels produce an error. If a specified pixel is not a valid index into
the colormap, a BadValue error results. If a specified pixel is not allocated by the
client (that is, is unallocated or is only allocated by another client) or if the colormap
was created with all entries writable (by passing AllocAll to XCr eat eCol or map), a
BadAccess error results. If more than one pixel is in error, the one that gets reported
is arbitrary.

XFr eeCol or s can generate BadAccess, BadColor, and BadValue errors.

Modifying and Querying Colormap Cells
To store an RGB value in a single colormap cell, use XSt or eCol or.

XSt oreCol or (*di splay, colormap, *color);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

86

Color Management Functions

The XSt or eCol or function changes the colormap entry of the pixel value specified in
the pixel member of the XColor structure. You specified this value in the pixel mem-
ber of the XColor structure. This pixel value must be a read/write cell and a valid
index into the colormap. If a specified pixel is not a valid index into the colormap, a
BadValue error results. XSt or eCol or also changes the red, green, and/or blue col-
or components. You specify which color components are to be changed by setting
DoRed, DoGreen, and/or DoBlue in the flags member of the XColor structure. If the
colormap is an installed map for its screen, the changes are visible immediately.

XSt or eCol or can generate BadAccess, BadColor, and BadValue errors.
To store multiple RGB values in multiple colormap cells, use XSt or eCol or s.

XSt or eCol ors(*display, colormap, color[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be
stored.

ncolors Specifies the number of XColor structures in the color de-

finition array.

The XSt or eCol or s function changes the colormap entries of the pixel values spec-
ified in the pixel members of the XColor structures. You specify which color com-
ponents are to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags
member of the XColor structures. If the colormap is an installed map for its screen,
the changes are visible immediately. XSt or eCol or s changes the specified pixels if
they are allocated writable in the colormap by any client, even if one or more pix-
els generates an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel either is unallocated or is allocated read-
only, a BadAccess error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

XSt or eCol or s can generate BadAccess, BadColor, and BadValue errors.
To store a color of arbitrary format in a single colormap cell, use Xcns St or eCol or .

Status XcnsStoreCol or(*display, colormap, *color);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color cell and the color to store. Values spec-
ified in this XcmsColor structure remain unchanged on
return.

The XcnsSt or eCol or function converts the color specified in the XcmsColor struc-
ture into RGB values. It then uses this RGB specification in an XColor structure,
whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call to XSt or eCol or
to change the color cell specified by the pixel member of the XcmsColor structure.
This pixel value must be a valid index for the specified colormap, and the color cell
specified by the pixel value must be a read/write cell. If the pixel value is not a valid

87

Color Management Functions

index, a BadValue error results. If the color cell is unallocated or is allocated read-
only, a BadAccess error results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note that XSt or eCol or has no return value; therefore, an XcmsSuccess return value
from this function indicates that the conversion to RGB succeeded and the call to
XSt or eCol or was made. To obtain the actual color stored, use XcnsQuer yCol or . Be-
cause of the screen's hardware limitations or gamut compression, the color stored
in the colormap may not be identical to the color specified.

Xcns St or eCol or can generate BadAccess, BadColor, and BadValue errors.

To store multiple colors of arbitrary format in multiple colormap cells, use XcnsS-
t oreCol ors.

Status XcnsStoreCol ors(*di spl ay, col or map, colors[], ncol ors,
conpression_flags_return[]);

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors Specifies the color specification array of XcmsColor

structures, each specifying a color cell and the color
to store in that cell. Values specified in the array re-
main unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression flags return Returns an array of Boolean values indicating com-
pression status. If a non-NULL pointer is supplied,
each element of the array is set to True if the corre-
sponding color was compressed and False otherwise.
Pass NULL if the compression status is not useful.

The XcnsSt or eCol or s function converts the colors specified in the array of Xcms-
Color structures into RGB values and then uses these RGB specifications in XColor
structures, whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call to
XSt or eCol or s to change the color cells specified by the pixel member of the corre-
sponding XcmsColor structure. Each pixel value must be a valid index for the spec-
ified colormap, and the color cell specified by each pixel value must be a read/write
cell. If a pixel value is not a valid index, a BadValue error results. If a color cell is
unallocated or is allocated read-only, a BadAccess error results. If more than one
pixel is in error, the one that gets reported is arbitrary. If the colormap is an installed
map for its screen, the changes are visible immediately.

Note that XSt or eCol ors has no return value; therefore, an XcmsSuccess return
value from this function indicates that conversions to RGB succeeded and the call
to XSt or eCol or s was made. To obtain the actual colors stored, use XcnsQuer yCol -
or s. Because of the screen's hardware limitations or gamut compression, the colors
stored in the colormap may not be identical to the colors specified.

XcnsSt or eCol or s can generate BadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, use XSt or eNanedCol or .

88

Color Management Functions

XSt or eNanmedCol or (*di splay, colormap, *color, pixel, flags);
display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color name string (for example, red).

pixel Specifies the entry in the colormap.

flags Specifies which red, green, and blue components are set.

The XSt or eNanedCol or function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The
pixel argument determines the entry in the colormap. The flags argument deter-
mines which of the red, green, and blue components are set. You can set this mem-
ber to the bitwise inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the col-
or name is not in the Host Portable Character Encoding, the result is implementa-
tion-dependent. Use of uppercase or lowercase does not matter. If the specified pix-
el is not a valid index into the colormap, a BadValue error results. If the specified
pixel either is unallocated or is allocated read-only, a BadAccess error results.

XSt or eNanedCol or can generate BadAccess, BadColor, BadName, and BadValue er-
rors.

The XQuer yCol or and XQuer yCol or s functions take pixel values in the pixel member
of XColor structures and store in the structures the RGB values for those pixels from
the specified colormap. The values returned for an unallocated entry are undefined.
These functions also set the flags member in the XColor structure to all three colors.
If a pixel is not a valid index into the specified colormap, a BadValue error results.
If more than one pixel is in error, the one that gets reported is arbitrary.

To query the RGB value of a single colormap cell, use XQuer yCol or.

XQueryCol or(*di splay, colormap, *def_in_out);

display Specifies the connection to the X server.
colormap Specifies the colormap.
def in out Specifies and returns the RGB values for the pixel spec-

ified in the structure.

The XQuer yCol or function returns the current RGB value for the pixel in the XColor
structure and sets the DoRed, DoGreen, and DoBlue flags.

XQuer yCol or can generate BadColor and BadValue errors.

To query the RGB values of multiple colormap cells, use XQuer yCol or s.

XQueryCol ors(*display, colormap, defs_in_out[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs in out Specifies and returns an array of color definition struc-

tures for the pixel specified in the structure.

89

Color Management Functions

ncolors Specifies the number of XColor structures in the color
definition array.

The XQuer yCol ors function returns the RGB value for each pixel in each XColor
structure and sets the DoRed, DoGreen, and DoBlue flags in each structure.

XQuer yCol or s can generate BadColor and BadValue errors.

To query the color of a single colormap cell in an arbitrary format, use XcnmsQuer y-
Col or.

Status XcrsQuer yCol or (*di spl ay, col or map, *col or _i n_out,
result format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color in_out Specifies the pixel member that indicates the color

cell to query. The color specification stored for the
color cell is returned in this XcmsColor structure.

result format Specifies the color format for the returned color
specification.

The XcnmsQuer yCol or function obtains the RGB value for the pixel value in the pixel
member of the specified XcmsColor structure and then converts the value to the
target format as specified by the result format argument. If the pixel is not a valid
index in the specified colormap, a BadValue error results.

XcmsQuer yCol or can generate BadColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format, use XcnsQuer y-
Col ors.

St at us XcnsQuer yCol ors(*di splay, colormap, colors_in_out[], ncolors,
result format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors_in out Specifies an array of XcmsColor structures, each pix-

el member indicating the color cell to query. The col-
or specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

result format Specifies the color format for the returned color
specification.

The XcnsQuer yCol or s function obtains the RGB values for pixel values in the pixel
members of XcmsColor structures and then converts the values to the target format
as specified by the result format argument. If a pixel is not a valid index into the
specified colormap, a BadValue error results. If more than one pixel is in error, the
one that gets reported is arbitrary.

90

Color Management Functions

XcmsQuer yCol or s can generate BadColor and BadValue errors.

Color Conversion Context Functions

This section describes functions to create, modify, and query Color Conversion Con-
texts (CCCs).

Associated with each colormap is an initial CCC transparently generated by Xlib.

Therefore, when you specify a colormap as an argument to a function, you are
indirectly specifying a CCC. The CCC attributes that can be modified by the X
client are:

e Client White Point
¢ Gamut compression procedure and client data
¢ White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attrib-
utes for subsequently created CCCs can be defined by changing the CCC attributes
of the default CCC. There is a default CCC associated with each screen.

Getting and Setting the Color Conversion Context of a
Colormap

To obtain the CCC associated with a colormap, use Xcns CCCOf Col or nap.
XcnsCCC Xcns CCCOf Col or map(*di splay, col ornap);

display Specifies the connection to the X server.
colormap Specifies the colormap.

The Xcrms CCCOF Col or map function returns the CCC associated with the specified col-
ormap. Once obtained, the CCC attributes can be queried or modified. Unless the
CCC associated with the specified colormap is changed with XcnsSet CCCOf Col -
or map, this CCC is used when the specified colormap is used as an argument to
color functions.

To change the CCC associated with a colormap, use XcnsSet CCCOf Col or map.

Xcms CCC XcmsSet CCCOf Col or map(*di splay, colormap, ccc);

display Specifies the connection to the X server.
colormap Specifies the colormap.
ccc Specifies the CCC.

The XcrsSet CCCOf Col or map function changes the CCC associated with the specified
colormap. It returns the CCC previously associated with the colormap. If they are
not used again in the application, CCCs should be freed by calling XcrsFr eeCCC.
Several colormaps may share the same CCC without restriction; this includes the
CCCs generated by Xlib with each colormap. Xlib, however, creates a new CCC with
each new colormap.

91

Color Management Functions

Obtaining the Default Color Conversion Context

You can change the default CCC attributes for subsequently created CCCs by chang-
ing the CCC attributes of the default CCC. A default CCC is associated with each
screen.

To obtain the default CCC for a screen, use XcnsDef aul t CCC.

Xcms CCC XcnsDef aul t CCC(*di spl ay, screen_numnber);

display Specifies the connection to the X server.
screen _number Specifies the appropriate screen number on the host
server.

The XcrsDef aul t CCC function returns the default CCC for the specified screen. Its
visual is the default visual of the screen. Its initial gamut compression and white
point adjustment procedures as well as the associated client data are implementa-
tion specific.

Color Conversion Context Macros

Applications should not directly modify any part of the XcmsCCC. The following lists
the C language macros, their corresponding function equivalents for other language
bindings, and what data they both can return.

Di spl ayOf CCC(ccc);

Di splay *XcnsDi spl ayOF CCC(ccc) ;

ccc Specifies the CCC.

Both return the display associated with the specified CCC.
Vi sual OF CCC(ccc);

Vi sual *XcnsVi sual OF CCC(ccc);

ccc Specifies the CCC.

Both return the visual associated with the specified CCC.
Scr eenNumber OF CCC(ccc) ;

i nt XcnsScreenNunber OF CCC(ccc) ;

ccc Specifies the CCC.

Both return the number of the screen associated with the specified CCC.
Scr eenWhi t ePoi nt OfF CCC(ccc);

XcmsCol or XcneScr eenWi t ePoi nt OF CCC(ccc) ;

ccc Specifies the CCC.

92

Color Management Functions

Both return the white point of the screen associated with the specified CCC.
d i ent Whi t ePoi nt OF CCC(ccc);

XcnsCol or *Xcrsd i ent Whi t ePoi nt OF CCC(ccc);

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

Modifying Attributes of a Color Conversion Context

To set the Client White Point in the CCC, use XcnsSet Wi t ePoi nt .
St at us XcnsSet Whi t ePoi nt (ccc, *color);

ccc Specifies the CCC.

color Specifies the new Client White Point.

The XcnsSet Whi t ePoi nt function changes the Client White Point in the specified
CCC. Note that the pixel member is ignored and that the color specification is left
unchanged upon return. The format for the new white point must be XcmsCIEXYZ-
Format, XcmsCIEuvYFormat, XcmsCIExyYFormat, or XcmsUndefinedFormat. If the
color argument is NULL, this function sets the format component of the Client White
Point specification to XcmsUndefinedFormat, indicating that the Client White Point
is assumed to be the same as the Screen White Point.

This function returns nonzero status if the format for the new white point is valid;
otherwise, it returns zero.

To set the gamut compression procedure and corresponding client data in a speci-
fied CCC, use XcnsSet Conpr essi onPr oc.

XcnsConpr essi onProc XcnsSet Conpr essi onProc(ccc, conpr essi on_pr oc,
client _data);

ccc Specifies the CCC.

compression_proc Specifies the gamut compression procedure that is
to be applied when a color lies outside the screen's
color gamut. If NULL is specified and a function us-
ing this CCC must convert a color specification to a
device-dependent format and encounters a color that
lies outside the screen's color gamut, that function
will return XcmsFailure.

client data Specifies client data for gamut compression proce-
dure or NULL.

The XcnsSet Conpr essi onPr oc function first sets the gamut compression procedure
and client data in the specified CCC with the newly specified procedure and client
data and then returns the old procedure.

To set the white point adjustment procedure and corresponding client data in a
specified CCC, use XcnsSet Wi t eAdj ust Proc.

93

Color Management Functions

XcrmsWhi t eAdj ust Proc XcnsSet Whi t eAdj ust Proc(ccec, whi t e_adj ust _pr oc,
client_data);

ccc Specifies the CCC.
white adjust proc Specifies the white point adjustment procedure.
client data Specifies client data for white point adjustment pro-

cedure or NULL.

The XcnsSet Whi t eAdj ust Pr oc function first sets the white point adjustment proce-
dure and client data in the specified CCC with the newly specified procedure and
client data and then returns the old procedure.

Creating and Freeing a Color Conversion Context

You can explicitly create a CCC within your application by calling XcnsCr eat eCCC.
These created CCCs can then be used by those functions that explicitly call for a
CCC argument. Old CCCs that will not be used by the application should be freed
using XcnsFr eeCCC.

To create a CCC, use XcnsCr eat eCCC.

XcmsCCC XcnsCr eat e CCC(*di spl ay, screen_nunber, *vi sual ,
*client_white_point, conpr essi on_pr oc, conpressi on_client_data,
white_adjust _proc, white_adjust_client_data);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

visual Specifies the visual type.

client_ white_point Specifies the Client White Point. If NULL is specified,

the Client White Point is to be assumed to be the
same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc Specifies the gamut compression procedure that is
to be applied when a color lies outside the screen's
color gamut. If NULL is specified and a function us-
ing this CCC must convert a color specification to a
device-dependent format and encounters a color that
lies outside the screen's color gamut, that function
will return XcmsFailure.

compression_client _data Specifies client data for use by the gamut compres-
sion procedure or NULL.

white adjust proc Specifies the white adjustment procedure that is to
be applied when the Client White Point differs from
the Screen White Point. NULL indicates that no white
point adjustment is desired.

white adjust_client data Specifies client data for use with the white point ad-
justment procedure or NULL.

94

Color Management Functions

The XcnsCr eat eCCC function creates a CCC for the specified display, screen, and
visual.

To free a CCC, use XcnsFr eeCCC.
voi d XcrmsFreeCCC(ccc);
ccc Specifies the CCC.

The XcrsFr eeCCC function frees the memory used for the specified CCC. Note that
default CCCs and those currently associated with colormaps are ignored.

Converting between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single
destination format, use XcnsConvert Col or s.

St at us XcnsConvert Col or s(ccc, colors_in_out[], ncol ors,
target format, conpression flags return[]);

ccc Specifies the CCC. If conversion is between de-
vice-independent color spaces only (for example,
TekHVC to CIELuv), the CCC is necessary only to
specify the Client White Point.

colors in out Specifies an array of color specifications. Pixel mem-
bers are ignored and remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

target format Specifies the target color specification format.

compression flags return Returns an array of Boolean values indicating com-
pression status. If a non-NULL pointer is supplied,
each element of the array is set to True if the corre-
sponding color was compressed and False otherwise.
Pass NULL if the compression status is not useful.

The XcmsConvert Col or s function converts the color specifications in the specified
array of XcmsColor structures from their current format to a single target format,
using the specified CCC. When the return value is XcmsFailure, the contents of the
color specification array are left unchanged.

The array may contain a mixture of color specification formats (for example, 3
CIE XYZ, 2 CIE Luv, and so on). When the array contains both device-independent
and device-dependent color specifications and the target format argument speci-
fies a device-dependent format (for example, XcmsRGBiFormat, XcmsRGBFormat),
all specifications are converted to CIE XYZ format and then to the target device-de-
pendent format.

Callback Functions

This section describes the gamut compression and white point adjustment call-
backs.

95

Color Management Functions

The gamut compression procedure specified in the CCC is called when an attempt
to convert a color specification from XcmsCIEXYZ to a device-dependent format
(typically XcmsRGBi) results in a color that lies outside the screen's color gamut. If
the gamut compression procedure requires client data, this data is passed via the
gamut compression client data in the CCC.

During color specification conversion between device-independent and device-de-
pendent color spaces, if a white point adjustment procedure is specified in the CCC,
it is triggered when the Client White Point and Screen White Point differ. If required,
the client data is obtained from the CCC.

Prototype Gamut Compression Procedure

The gamut compression callback interface must adhere to the following:

typedef Status(*XcnmsConpressionProc)(ccc, colors_in_out[], ncolors,
i ndex, conpression_flags return[]);

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

index Specifies the index into the array of XcmsColor struc-
tures for the encountered color specification that lies
outside the screen's color gamut. Valid values are 0
(for the first element) to ncolors - 1.

compression_flags return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is sup-
plied and a color at a given index is compressed, then
True should be stored at the corresponding index in
this array; otherwise, the array should not be modi-
fied.

When implementing a gamut compression procedure, consider the following rules
and assumptions:

¢ The gamut compression procedure can attempt to compress one or multiple spec-
ifications at a time.

* When called, elements 0 to index - 1 in the color specification array can be as-
sumed to fall within the screen's color gamut. In addition, these color specifica-
tions are already in some device-dependent format (typically XcmsRGBi). If any
modifications are made to these color specifications, they must be in their initial
device-dependent format upon return.

* When called, the element in the color specification array specified by the index ar-
gument contains the color specification outside the screen's color gamut encoun-
tered by the calling routine. In addition, this color specification can be assumed to
be in XcmsCIEXYZ. Upon return, this color specification must be in XcmsCIEXYZ.

96

Color Management Functions

When called, elements from index to ncolors - 1 in the color specification array
may or may not fall within the screen's color gamut. In addition, these color spec-
ifications can be assumed to be in XcmsCIEXYZ. If any modifications are made to
these color specifications, they must be in XcmsCIEXYZ upon return.

The color specifications passed to the gamut compression procedure have already
been adjusted to the Screen White Point. This means that at this point the color
specification's white point is the Screen White Point.

If the gamut compression procedure uses a device-independent color space not
initially accessible for use in the color management system, use XcnsAddCol or S-
pace to ensure that it is added.

Supplied Gamut Compression Procedures

The following equations are useful in describing gamut compression functions: de-

lim %%

%l ELab~Psychonetri c~Chroma ~=~ sqrt(a_star sup 2 ~+~ b_star sup 2)%
%l ELab~Psychonetri c~Hue ~=~ tan sup -1 left [b_star over a_star right
%l ELuv~Psychonetri c~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2)%
%l ELuv~Psychonetri c~Hue ~=~ tan sup -1 left [v_star over u_star right

The gamut compression callback procedures provided by Xlib are as follows:

XcmsCl ELabd i pL

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b*
color space until the color is within the gamut. If the Psychometric Chroma of
the color specification is beyond maximum for the Psychometric Hue Angle, then
while maintaining the same Psychometric Hue Angle, the color will be clipped to
the CIE L*a*b* coordinates of maximum Psychometric Chroma. See XcnsCl ELab-
Quer yMaxC. No client data is necessary.

XcnsCl ELabd i pab

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing Psychometric Chroma, while maintaining Psychometric Hue
Angle, until the color is within the gamut. No client data is necessary.

XcnsCl ELabd i pLab

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with CIE L*a*b* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

XcnsCl ELuvd i pL

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v*

97

1%

1%

Color Management Functions

color space until the color is within the gamut. If the Psychometric Chroma of
the color specification is beyond maximum for the Psychometric Hue Angle, then,
while maintaining the same Psychometric Hue Angle, the color will be clipped to
the CIE L*u*v* coordinates of maximum Psychometric Chroma. See XcnsCl ELu-
vQuer yMaxC. No client data is necessary.

e XcnsCl ELuvd i puv

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing Psychometric Chroma, while maintaining Psychometric Hue
Angle, until the color is within the gamut. No client data is necessary.

e XcnsCl ELuvd i pLuv

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with CIE L*u*v* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

* XcnsTekHVCO i pV

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing the Value dimension in the TekHVC color
space until the color is within the gamut. If Chroma of the color specification is
beyond maximum for the particular Hue, then, while maintaining the same Hue,
the color will be clipped to the Value and Chroma coordinates that represent max-
imum Chroma for that particular Hue. No client data is necessary.

e XcnsTekHVCd i pC

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing the Chroma dimension in the TekHVC color space until the
color is within the gamut. No client data is necessary.

e XcnmsTekHVCd i pVC

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with TekHVC coordinates that fall within the color gamut
while maintaining the original Hue and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

Prototype White Point Adjustment Procedure

The white point adjustment procedure interface must adhere to the following:

typedef Status (*XcnsWhiteAdjustProc)(ccc, *initial _white_point,
*target _white_point, target _format, colors_in_out[], ncol ors,
conpression_flags_return[]);

ccc Specifies the CCC.

initial white point Specifies the initial white point.

target white point Specifies the target white point.

target format Specifies the target color specification format.

98

Color Management Functions

colors in out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is sup-
plied and a color at a given index is compressed, then
True should be stored at the corresponding index in
this array; otherwise, the array should not be modi-
fied.

Supplied White Point Adjustment Procedures

White point adjustment procedures provided by Xlib are as follows:
e XcnsCl ELabWhi t eShi ft Col ors

e This uses the CIE L*a*b* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and des-
tination white points. This procedure simply converts the color specifications to
XcmsCIELab using the source white point and then converts to the target speci-
fication format using the destination's white point. No client data is necessary.

e XcrrsCl ELuvWhi t eShi ft Col ors

e This uses the CIE L*u*v* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and des-
tination white points. This procedure simply converts the color specifications to
XcmsCIELuv using the source white point and then converts to the target speci-
fication format using the destination's white point. No client data is necessary.

e XcnmsTekHVCWhi t eShi ft Col ors

¢ This uses the TekHVC color space for adjusting the chromatic character of col-
ors to compensate for the chromatic differences between the source and destina-
tion white points. This procedure simply converts the color specifications to Xcm-
sTekHVC using the source white point and then converts to the target specifica-
tion format using the destination's white point. An advantage of this procedure
over those previously described is an attempt to minimize hue shift. No client data
is necessary.

From an implementation point of view, these white point adjustment procedures
convert the color specifications to a device-independent but white-point-dependent
color space (for example, CIE L*u*v*, CIE L*a*b*, TekHVC) using one white point
and then converting those specifications to the target color space using another
white point. In other words, the specification goes in the color space with one white
point but comes out with another white point, resulting in a chromatic shift based on
the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIE u'v'y,
CIE XYZ, and CIE xyY. When developing a custom white point adjustment procedure
that uses a device-independent color space not initially accessible for use in the
color management system, use XcnsAddCol or Space to ensure that it is added.

99

Color Management Functions

As an example, if the CCC specifies a white point adjustment procedure and if the
Client White Point and Screen White Point differ, the XcnsAl | ocCol or function will
use the white point adjustment procedure twice:

* Once to convert to XcmsRGB

* A second time to convert from XcmsRGB

For example, assume the specification is in XcmsCIEuvY and the adjustment proce-
dure is XcnsCl ELuvWi t eShi ft Col or s. During conversion to XcmsRGB, the call to
XcnsAl | ocCol or results in the following series of color specification conversions:

* From XcmsCIEuvY to XcmsCIELuv using the Client White Point

e From XcmsCIELuv to XcmsCIEuvY using the Screen White Point

¢ From XcmsCIEuvY to XcmsCIEXYZ (CIE u'v'Y and XYZ are white-point-indepen-
dent color spaces)

¢ From XcmsCIEXYZ to XcmsRGBIi
e From XcmsRGBi to XcmsRGB

The resulting RGB specification is passed to XAl | ocCol or, and the RGB specification
returned by XAl | ocCol or is converted back to XcmsCIEuvY by reversing the color
conversion sequence.

Gamut Querying Functions

This section describes the gamut querying functions that Xlib provides. These func-
tions allow the client to query the boundary of the screen's color gamut in terms of
the CIE L*a*b*, CIE L*u*v*, and TekHVC color spaces. Functions are also provided
that allow you to query the color specification of:

White (full-intensity red, green, and blue)

Red (full-intensity red while green and blue are zero)

Green (full-intensity green while red and blue are zero)

Blue (full-intensity blue while red and green are zero)

¢ Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from
these gamut querying functions is assumed to be the Screen White Point. This is
a reasonable assumption, because the client is trying to query the screen's color
gamut.

The following naming convention is used for the Max and Min functions:

Xcms<col or _space>Quer yMax<di nensi ons>

Xcms<col or _space>Quer yM n<di nmensi ons>

100

Color Management Functions

The <dimensions> consists of a letter or letters that identify the dimensions of the
color space that are not fixed. For example, Xcnms TekHVCQuer yMaxC is given a fixed
Hue and Value for which maximum Chroma is found.

Red, Green, and Blue Queries

To obtain the color specification for black (zero-intensity red, green, and blue), use
XcmsQuer yBl ack.

Status XcnsQueryBl ack(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnmsQuer yBl ack function returns the color specification in the specified target
format for zero-intensity red, green, and blue.

To obtain the color specification for blue (full-intensity blue while red and green are
zero), use XcnsQuer yBl ue.

Status XcnsQueryBlue(ccc, target _format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnsQuer yBl ue function returns the color specification in the specified target
format for full-intensity blue while red and green are zero.

To obtain the color specification for green (full-intensity green while red and blue
are zero), use XcnsQuer yG een.

Status XcnsQueryGreen(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with

101

Color Management Functions

the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnmsQuer yGr een function returns the color specification in the specified target
format for full-intensity green while red and blue are zero.

To obtain the color specification for red (full-intensity red while green and blue are
zero), use XcnsQuer yRed.

Status XcnsQueryRed(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnsQuer yRed function returns the color specification in the specified target
format for full-intensity red while green and blue are zero.

To obtain the color specification for white (full-intensity red, green, and blue), use
XcnmsQuer yWhi t e.

Status XcnsQueryWhite(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnmsQuer yWi t e function returns the color specification in the specified target
format for full-intensity red, green, and blue.

CIELab Queries

The following equations are useful in describing the CIELab query functions: delim

%%
%l ELab~Psychonetri c~Chroma ~=~ sqgrt(a_star sup 2 ~+~ b_star sup 2)%
%l ELab~Psychonetri c~Hue ~=~ tan sup -1 left [b_star over a_star right 1%

102

Color Management Functions

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcnsCl ELabQuer yMaxC.

Status XcnsCl ELabQuer yMaxC(ccc, hue_angle, L_star, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

L star Specifies the lightness (L*) at which to find (Ls.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (IC. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*a*b*
coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a
given Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELabQuery-
MaxL.

Status XcnsCl ELabQueryMaxL(ccc, hue_angle, chroma, *color _return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxL function, given a hue angle and chroma, finds the point
in CIE L*a*b* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*a*b* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcnsCl ELabQuer yMaxLC.

St at us XcnsCl ELabQuer yMaxLC(ccc, hue_angle, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

103

Color Management Functions

color return Returns the CIE L*a*b* coordinates of (Lc dis-
playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a giv-
en Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELabQuer yM nL.

Status XcnsCl ELabQueryM nL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yM nL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE
L*a*b* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

CIELuv Queries

The following equations are useful in describing the CIELuv query functions: delim

%%
%l ELuv~Psychonetri c~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2)%
%l ELuv~Psychonetric~Hue ~=~ tan sup -1 left [v_star over u_star right 1%

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcnsCl ELuvQuer yMaxC.

St at us XcnsCl ELuvQuer yMaxC(ccc, hue_angle, L_star, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

L star Specifies the lightness (L*) at which to find (Ls.

104

Color Management Functions

color return Returns the CIE L*u*v* coordinates of (Lc dis-
playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*u*v*
coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) for a
given Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELuvQuery-
MaxL.

Status XcnsCl ELuvQuer yMaxL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

L star Specifies the lightness (L*) at which to find (Ls.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (IC. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxL function, given a hue angle and chroma, finds the point
in CIE L*u*v* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*u*v* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcnsCl ELuvQuer yMaxLC.

Status XcnsCl ELuvQuer yMaxLC(ccc, hue_angle, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a giv-
en Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELuvQuer yM nL.

105

Color Management Functions

Status XcnsCl ELuvQueryM nL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yM nL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE
L*u*v* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

TekHVC Queries

To obtain the maximum Chroma for a given Hue and Value, use Xcns TekHVCQuer y-
MaxC.

St atus XcnsTekHVCQuer yMaxC(ccc, hue, value, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

value Specifies the Value in which to find the (Va.

color return Returns the (Lc at which the (1C was found. The white

point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsTekHVCQuer yMaxC function, given a Hue and Value, determines the maxi-
mum Chroma in TekHVC color space displayable by the screen. It returns the max-
imum Chroma along with the actual Hue and Value at which the maximum Chroma
was found.

To obtain the maximum Value for a given Hue and Chroma, use Xcns TekHVCQuer y-
MaxV.

Stat us XcnsTekHVCQuer yMaxV(ccc, hue, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

chroma Specifies the chroma at which to find (Ch.

106

Color Management Functions

color return Returns the (Lc at which the (1C was found. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcns TekHVCQuer yMaxV function, given a Hue and Chroma, determines the max-
imum Value in TekHVC color space displayable by the screen. It returns the maxi-
mum Value and the actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified
Hue, use Xcns TekHVCQuer yMaxVC.

St at us XcnmsTekHVCQuer yMaxVC(ccc, hue, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu. XcmsTekHVC for the maxi-
mum Chroma, the Value at which \ that maximum
Chroma is reached, and the actual Hue

color return Returns the (Lc at which the (1C was found. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcnms TekHVCQuer yMaxVC function, given a Hue, determines the maximum Chro-
ma in TekHVC color space displayable by the screen and the Value at which that
maximum Chroma is reached. It returns the maximum Chroma, the Value at which
that maximum Chroma is reached, and the actual Hue for which the maximum Chro-
ma was found.

To obtain a specified number of TekHVC specifications such that they contain max-
imum Values for a specified Hue and the Chroma at which the maximum Values are
reached, use Xcns TekHVCQuer yMaxVSanpl es.

St at us XcnsTekHVCQuer yMaxVSanpl es(ccc, hue, colors return[], nsam
ples);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

nsamples Specifies the number of samples.

colors return Returns nsamples of color specifications in Xcm-

sTekHVC such that the Chroma is the maximum at-
tainable for the Value and Hue. The white point as-
sociated with the returned color specification is the
Screen White Point. The value returned in the pixel
member is undefined.

The XcnsTekHVCQuer yMaxVSanpl es returns nsamples of maximum Value, the Chro-
ma at which that maximum Value is reached, and the actual Hue for which the max-
imum Chroma was found. These sample points may then be used to plot the maxi-

107

Color Management Functions

mum Value/Chroma boundary of the screen's color gamut for the specified Hue in
TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use XcnsTekHVC
QueryM nV.

St at us XcnsTekHVCQueryM nV(ccc, hue, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

value Specifies the Value in which to find the (Va.

color return Returns the (Lc at which the (1C was found. The white

point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcms TekHVCQuer yM nV function, given a Hue and Chroma, determines the min-
imum Value in TekHVC color space displayable by the screen. It returns the mini-
mum Value and the actual Hue and Chroma at which the minimum Value was found.

Color Management Extensions

The Xlib color management facilities can be extended in two ways:
¢ Device-Independent Color Spaces

* Device-independent color spaces that are derivable to CIE XYZ space can be
added using the Xcrs AddCol or Space function.

¢ Color Characterization Function Set

¢ A Color Characterization Function Set consists of device-dependent color spaces
and their functions that convert between these color spaces and the CIE XYZ color
space, bundled together for a specific class of output devices. A function set can
be added using the XcnmsAddFunct i onSet function.

Color Spaces

The CIE XYZ color space serves as the hub for all conversions between device-inde-
pendent and device-dependent color spaces. Therefore, the knowledge to convert
an XcmsColor structure to and from CIE XYZ format is associated with each color
space. For example, conversion from CIE L*u*v* to RGB requires the knowledge to
convert from CIE L*u*v* to CIE XYZ and from CIE XYZ to RGB. This knowledge is
stored as an array of functions that, when applied in series, will convert the Xcm-
sColor structure to or from CIE XYZ format. This color specification conversion
mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only
device-dependent color spaces, shortcuts are taken whenev